
Falcon Documentation
Release 3.0.1

Kurt Griffiths et al.

May 10, 2021

CONTENTS

1 What People are Saying 3

2 Quick Links 5

3 Features 7

4 Who’s Using Falcon? 9

5 Documentation 11
5.1 User Guide . 11

5.1.1 Introduction . 11
5.1.2 Installation . 13
5.1.3 Quickstart . 15
5.1.4 Tutorial (WSGI) . 26
5.1.5 Tutorial (ASGI) . 46
5.1.6 Recipes . 67
5.1.7 FAQ . 75

5.2 Deployment Guide . 92
5.2.1 Preamble & Disclaimer . 92
5.2.2 Deploying Falcon on Linux with NGINX and uWSGI . 92

5.3 Community Guide . 95
5.3.1 Get Help . 95
5.3.2 Contribute to Falcon . 96

5.4 Framework Reference . 97
5.4.1 The App Class . 97
5.4.2 Request & Response . 112
5.4.3 WebSocket (ASGI Only) . 168
5.4.4 Cookies . 181
5.4.5 Status Codes . 183
5.4.6 Error Handling . 187
5.4.7 Media . 220
5.4.8 Multipart Forms . 228
5.4.9 Redirection . 234
5.4.10 Middleware . 235
5.4.11 CORS . 241
5.4.12 Hooks . 242
5.4.13 Routing . 245
5.4.14 Inspect Module . 256
5.4.15 Utilities . 263
5.4.16 Testing Helpers . 273

i

5.5 Changelogs . 305
5.5.1 Changelog for Falcon 3.0.1 . 305
5.5.2 Changelog for Falcon 3.0.0 . 305
5.5.3 Changelog for Falcon 2.0.0 . 311
5.5.4 Changelog for Falcon 1.4.1 . 318
5.5.5 Changelog for Falcon 1.4.0 . 319
5.5.6 Changelog for Falcon 1.3.0 . 320
5.5.7 Changelog for Falcon 1.2.0 . 321
5.5.8 Changelog for Falcon 1.1.0 . 323
5.5.9 Changelog for Falcon 1.0.0 . 324
5.5.10 Changelog for Falcon 0.3.0 . 327
5.5.11 Changelog for Falcon 0.2.0 . 327

Python Module Index 331

Index 333

ii

Falcon Documentation, Release 3.0.1

Release v3.0 (Installation)

Falcon is a minimalist WSGI library for building speedy web APIs and app backends. We like to think of Falcon as
the Dieter Rams of web frameworks.

When it comes to building HTTP APIs, other frameworks weigh you down with tons of dependencies and unnecessary
abstractions. Falcon cuts to the chase with a clean design that embraces HTTP and the REST architectural style.

class QuoteResource:

def on_get(self, req, resp):
"""Handles GET requests"""
quote = {

'quote': (
"I've always been more interested in "
"the future than in the past."

),
'author': 'Grace Hopper'

}

resp.media = quote

app = falcon.App()
app.add_route('/quote', QuoteResource())

CONTENTS 1

Falcon Documentation, Release 3.0.1

2 CONTENTS

CHAPTER

ONE

WHAT PEOPLE ARE SAYING

“We have been using Falcon as a replacement for [framework] and we simply love the performance (three times faster)
and code base size (easily half of our original [framework] code).”

“Falcon looks great so far. I hacked together a quick test for a tiny server of mine and was ~40% faster with only 20
minutes of work.”

“Falcon is rock solid and it’s fast.”

“I’m loving #falconframework! Super clean and simple, I finally have the speed and flexibility I need!”

“I feel like I’m just talking HTTP at last, with nothing in the middle. Falcon seems like the requests of backend.”

“The source code for Falcon is so good, I almost prefer it to documentation. It basically can’t be wrong.”

“What other framework has integrated support for 786 TRY IT NOW ?”

3

Falcon Documentation, Release 3.0.1

4 Chapter 1. What People are Saying

CHAPTER

TWO

QUICK LINKS

• Read the docs

• Falcon add-ons and complementary packages

• Falcon articles, talks and podcasts

• falconry/user for Falcon users @ Gitter

• falconry/dev for Falcon contributors @ Gitter

5

https://falcon.readthedocs.io/en/stable
https://github.com/falconry/falcon/wiki
https://github.com/falconry/falcon/wiki/Articles,-Talks-and-Podcasts
https://gitter.im/falconry/user
https://gitter.im/falconry/dev

Falcon Documentation, Release 3.0.1

6 Chapter 2. Quick Links

CHAPTER

THREE

FEATURES

Falcon tries to do as little as possible while remaining highly effective.

• ASGI, WSGI, and WebSocket support

• Native asyncio support

• No reliance on magic globals for routing and state management

• Stable interfaces with an emphasis on backwards-compatibility

• Simple API modeling through centralized RESTful routing

• Highly-optimized, extensible code base

• Easy access to headers and bodies through request and response objects

• DRY request processing via middleware components and hooks

• Strict adherence to RFCs

• Idiomatic HTTP error responses

• Straightforward exception handling

• Snappy testing with WSGI/ASGI helpers and mocks

• CPython 3.5+ and PyPy 3.5+ support

7

Falcon Documentation, Release 3.0.1

8 Chapter 3. Features

CHAPTER

FOUR

WHO’S USING FALCON?

Falcon is used around the world by a growing number of organizations, including:

• 7ideas

• Cronitor

• EMC

• Hurricane Electric

• Leadpages

• OpenStack

• Rackspace

• Shiftgig

• tempfil.es

• Opera Software

If you are using the Falcon framework for a community or commercial project, please consider adding your informa-
tion to our wiki under Who’s Using Falcon?

You might also like to view our Add-on Catalog, where you can find a list of add-ons maintained by the community.

9

https://github.com/falconry/falcon/wiki/Who's-using-Falcon%3F
https://github.com/falconry/falcon/wiki/Add-on-Catalog

Falcon Documentation, Release 3.0.1

10 Chapter 4. Who’s Using Falcon?

CHAPTER

FIVE

DOCUMENTATION

5.1 User Guide

5.1.1 Introduction

Perfection is finally attained not when there is no longer anything to add, but when there is no longer
anything to take away.

- Antoine de Saint-Exupéry

Falcon is a reliable, high-performance Python web framework for building large-scale app backends and microservices.
It encourages the REST architectural style, and tries to do as little as possible while remaining highly effective.

Falcon apps work with any WSGI server, and run like a champ under CPython 3.5+ and PyPy 3.5+.

Features

Falcon tries to do as little as possible while remaining highly effective.

• ASGI, WSGI, and WebSocket support

• Native asyncio support

• No reliance on magic globals for routing and state management

• Stable interfaces with an emphasis on backwards-compatibility

• Simple API modeling through centralized RESTful routing

• Highly-optimized, extensible code base

• Easy access to headers and bodies through request and response objects

• DRY request processing via middleware components and hooks

• Strict adherence to RFCs

• Idiomatic HTTP error responses

• Straightforward exception handling

• Snappy testing with WSGI/ASGI helpers and mocks

• CPython 3.5+ and PyPy 3.5+ support

11

https://falconframework.org

Falcon Documentation, Release 3.0.1

How is Falcon different?

We designed Falcon to support the demanding needs of large-scale microservices and responsive app backends. Falcon
complements more general Python web frameworks by providing bare-metal performance, reliability, and flexibility
wherever you need it.

Fast. Same hardware, more requests. Falcon turns around requests several times faster than most other Python
frameworks. For an extra speed boost, Falcon compiles itself with Cython when available, and also works well with
PyPy. Considering a move to another programming language? Benchmark with Falcon + PyPy first.

Reliable. We go to great lengths to avoid introducing breaking changes, and when we do they are fully documented and
only introduced (in the spirit of SemVer) with a major version increment. The code is rigorously tested with numerous
inputs and we require 100% coverage at all times. Falcon does not depend on any external Python packages.

Debuggable. Falcon eschews magic. It’s easy to tell which inputs lead to which outputs. To avoid incentivizing
the use of hard-to-debug global state, Falcon does not use decorators to define routes. Unhandled exceptions are
never encapsulated or masked. Potentially surprising behaviors, such as automatic request body parsing, are well-
documented and disabled by default. Finally, we take care to keep logic paths within the framework simple, shallow
and understandable. All of this makes it easier to reason about the code and to debug edge cases in large-scale
deployments.

Flexible. Falcon leaves a lot of decisions and i`mplementation details to you, the API developer. This gives you a
lot of freedom to customize and tune your implementation. Due to Falcon’s minimalist design, Python community
members are free to independently innovate on Falcon add-ons and complementary packages.

About Apache 2.0

Falcon is released under the terms of the Apache 2.0 License. This means that you can use it in your commercial
applications without having to also open-source your own code. It also means that if someone happens to contribute
code that is associated with a patent, you are granted a free license to use said patent. That’s a pretty sweet deal.

Now, if you do make changes to Falcon itself, please consider contributing your awesome work back to the community.

Falcon License

Copyright 2012-2017 by Rackspace Hosting, Inc. and other contributors, as noted in the individual source code files.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

By contributing to this project, you agree to also license your source code under the terms of the Apache License,
Version 2.0, as described above.

12 Chapter 5. Documentation

https://pypy.org
http://semver.org/
https://github.com/falconry/falcon/wiki
http://opensource.org/licenses/Apache-2.0
http://www.apache.org/licenses/LICENSE-2.0

Falcon Documentation, Release 3.0.1

5.1.2 Installation

PyPy

PyPy is the fastest way to run your Falcon app. PyPy3.5+ is supported as of PyPy v5.10.

$ pip install falcon

Or, to install the latest beta or release candidate, if any:

$ pip install --pre falcon

CPython

Falcon fully supports CPython 3.5+.

The latest stable version of Falcon can be installed directly from PyPI:

$ pip install falcon

Or, to install the latest beta or release candidate, if any:

$ pip install --pre falcon

In order to provide an extra speed boost, Falcon can compile itself with Cython. Wheels containing pre-compiled
binaries are available from PyPI for several common platforms. However, if a wheel for your platform of choice is not
available, you can choose to stick with the source distribution, or use the instructions below to cythonize Falcon for
your environment.

The following commands tell pip to install Cython, and then to invoke Falcon’s setup.py, which will in turn detect
the presence of Cython and then compile (AKA cythonize) the Falcon framework with the system’s default C compiler.

$ pip install cython
$ pip install --no-build-isolation --no-binary :all: falcon

Note that --no-build-isolation is necessary to override pip’s default PEP 517 behavior that can cause Cython
not to be found in the build environment.

If you want to verify that Cython is being invoked, simply pass -v to pip in order to echo the compilation commands:

$ pip install -v --no-build-isolation --no-binary :all: falcon

Installing on OS X

Xcode Command Line Tools are required to compile Cython. Install them with this command:

$ xcode-select --install

The Clang compiler treats unrecognized command-line options as errors, for example:

clang: error: unknown argument: '-mno-fused-madd' [-Wunused-command-line-argument-
→˓hard-error-in-future]

You might also see warnings about unused functions. You can work around these issues by setting additional Clang C
compiler flags as follows:

5.1. User Guide 13

http://pypy.org/
https://www.python.org/downloads/

Falcon Documentation, Release 3.0.1

$ export CFLAGS="-Qunused-arguments -Wno-unused-function"

Dependencies

Falcon does not require the installation of any other packages, although if Cython has been installed into the environ-
ment, it will be used to optimize the framework as explained above.

WSGI Server

Falcon speaks WSGI, and so in order to serve a Falcon app, you will need a WSGI server. Gunicorn and uWSGI are
some of the more popular ones out there, but anything that can load a WSGI app will do.

Windows users can try Waitress, a production-quality, pure-Python WSGI server. Other alternatives on Windows
include running Gunicorn and uWSGI via WSL, as well as inside Linux Docker containers.

$ pip install [gunicorn|uwsgi|waitress]

ASGI Server

Conversely, in order to run an async Falcon ASGI app, you will need an ASGI application server (Falcon only
supports ASGI 3.0+, aka the single-callable application style).

Uvicorn is a popular choice, owing to its fast and stable implementation. What is more, Uvicorn is supported on
Windows, and on PyPy (however, both at a performance loss compared to CPython on Unix-like systems).

Falcon is also regularly tested against Daphne, the current ASGI reference server.

For a more in-depth overview of available servers, see also: ASGI Implementations.

$ pip install [uvicorn|daphne|hypercorn]

Note: By default, the uvicorn package comes only with a minimal set of pure-Python dependencies. For CPython-
based production deployments, you can install Uvicorn along with more optimized alternatives such as uvloop (a
faster event loop), httptools (a faster HTTP protocol implementation) etc:

$ pip install uvicorn[standard]

See also a longer explanation on Uvicorn’s website: Quickstart.

Source Code

Falcon lives on GitHub, making the code easy to browse, download, fork, etc. Pull requests are always welcome!
Also, please remember to star the project if it makes you happy. :)

Once you have cloned the repo or downloaded a tarball from GitHub, you can install Falcon like this:

$ cd falcon
$ pip install .

Or, if you want to edit the code, first fork the main repo, clone the fork to your desktop, and then run the following to
install it using symbolic linking, so that when you change your code, the changes will be automagically available to
your app without having to reinstall the package:

14 Chapter 5. Documentation

https://asgi.readthedocs.io/en/latest/
https://asgi.readthedocs.io/en/latest/implementations.html
https://www.uvicorn.org/#quickstart
https://github.com/falconry/falcon

Falcon Documentation, Release 3.0.1

$ cd falcon
$ pip install -e .

You can manually test changes to the Falcon framework by switching to the directory of the cloned repo and then
running pytest:

$ cd falcon
$ pip install -r requirements/tests
$ pytest tests

Or, to run the default set of tests:

$ pip install tox && tox

Tip: See also the tox.ini file for a full list of available environments.

Finally, to build Falcon’s docs from source, simply run:

$ pip install tox && tox -e docs

Once the docs have been built, you can view them by opening the following index page in your browser. On OS X it’s
as simple as:

$ open docs/_build/html/index.html

Or on Linux:

$ xdg-open docs/_build/html/index.html

5.1.3 Quickstart

If you haven’t done so already, please take a moment to install the Falcon web framework before continuing.

Learning by Example

Here is a simple example from Falcon’s README, showing how to get started writing an app.

WSGI

ASGI

examples/things.py

Let's get this party started!
from wsgiref.simple_server import make_server

import falcon

Falcon follows the REST architectural style, meaning (among
other things) that you think in terms of resources and state
transitions, which map to HTTP verbs.
class ThingsResource:

(continues on next page)

5.1. User Guide 15

https://github.com/falconry/falcon/blob/master/tox.ini

Falcon Documentation, Release 3.0.1

(continued from previous page)

def on_get(self, req, resp):
"""Handles GET requests"""
resp.status = falcon.HTTP_200 # This is the default status
resp.content_type = falcon.MEDIA_TEXT # Default is JSON, so override
resp.text = ('\nTwo things awe me most, the starry sky '

'above me and the moral law within me.\n'
'\n'
' ~ Immanuel Kant\n\n')

falcon.App instances are callable WSGI apps
in larger applications the app is created in a separate file
app = falcon.App()

Resources are represented by long-lived class instances
things = ThingsResource()

things will handle all requests to the '/things' URL path
app.add_route('/things', things)

if __name__ == '__main__':
with make_server('', 8000, app) as httpd:

print('Serving on port 8000...')

Serve until process is killed
httpd.serve_forever()

You can run the above example directly using the included wsgiref server:

$ pip install falcon
$ python things.py

Then, in another terminal:

$ curl localhost:8000/things

As an alternative to Curl, you might want to give HTTPie a try:

$ pip install --upgrade httpie
$ http localhost:8000/things

examples/things_asgi.py

import falcon
import falcon.asgi

Falcon follows the REST architectural style, meaning (among
other things) that you think in terms of resources and state
transitions, which map to HTTP verbs.
class ThingsResource:

async def on_get(self, req, resp):
"""Handles GET requests"""
resp.status = falcon.HTTP_200 # This is the default status
resp.content_type = falcon.MEDIA_TEXT # Default is JSON, so override
resp.text = ('\nTwo things awe me most, the starry sky '

(continues on next page)

16 Chapter 5. Documentation

https://github.com/jkbr/httpie

Falcon Documentation, Release 3.0.1

(continued from previous page)

'above me and the moral law within me.\n'
'\n'
' ~ Immanuel Kant\n\n')

falcon.asgi.App instances are callable ASGI apps...
in larger applications the app is created in a separate file
app = falcon.asgi.App()

Resources are represented by long-lived class instances
things = ThingsResource()

things will handle all requests to the '/things' URL path
app.add_route('/things', things)

You can run the ASGI version with uvicorn or any other ASGI server:

$ pip install falcon uvicorn
$ uvicorn things_asgi:app

Then, in another terminal:

$ curl localhost:8000/things

As an alternative to Curl, you might want to give HTTPie a try:

$ pip install --upgrade httpie
$ http localhost:8000/things

A More Complex Example

Here is a more involved example that demonstrates reading headers and query parameters, handling errors, and work-
ing with request and response bodies.

WSGI

ASGI

Note that this example assumes that the requests package has been installed.

examples/things_advanced.py

import json
import logging
import uuid
from wsgiref import simple_server

import falcon
import requests

class StorageEngine:

def get_things(self, marker, limit):
return [{'id': str(uuid.uuid4()), 'color': 'green'}]

(continues on next page)

5.1. User Guide 17

https://github.com/jkbr/httpie
https://pypi.org/project/requests/

Falcon Documentation, Release 3.0.1

(continued from previous page)

def add_thing(self, thing):
thing['id'] = str(uuid.uuid4())
return thing

class StorageError(Exception):

@staticmethod
def handle(ex, req, resp, params):

TODO: Log the error, clean up, etc. before raising
raise falcon.HTTPInternalServerError()

class SinkAdapter:

engines = {
'ddg': 'https://duckduckgo.com',
'y': 'https://search.yahoo.com/search',

}

def __call__(self, req, resp, engine):
url = self.engines[engine]
params = {'q': req.get_param('q', True)}
result = requests.get(url, params=params)

resp.status = str(result.status_code) + ' ' + result.reason
resp.content_type = result.headers['content-type']
resp.text = result.text

class AuthMiddleware:

def process_request(self, req, resp):
token = req.get_header('Authorization')
account_id = req.get_header('Account-ID')

challenges = ['Token type="Fernet"']

if token is None:
description = ('Please provide an auth token '

'as part of the request.')

raise falcon.HTTPUnauthorized(title='Auth token required',
description=description,
challenges=challenges,
href='http://docs.example.com/auth')

if not self._token_is_valid(token, account_id):
description = ('The provided auth token is not valid. '

'Please request a new token and try again.')

raise falcon.HTTPUnauthorized(title='Authentication required',
description=description,
challenges=challenges,
href='http://docs.example.com/auth')

def _token_is_valid(self, token, account_id):
(continues on next page)

18 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

(continued from previous page)

return True # Suuuuuure it's valid...

class RequireJSON:

def process_request(self, req, resp):
if not req.client_accepts_json:

raise falcon.HTTPNotAcceptable(
description='This API only supports responses encoded as JSON.',
href='http://docs.examples.com/api/json')

if req.method in ('POST', 'PUT'):
if 'application/json' not in req.content_type:

raise falcon.HTTPUnsupportedMediaType(
title='This API only supports requests encoded as JSON.',
href='http://docs.examples.com/api/json')

class JSONTranslator:
NOTE: Normally you would simply use req.media and resp.media for
this particular use case; this example serves only to illustrate
what is possible.

def process_request(self, req, resp):
req.stream corresponds to the WSGI wsgi.input environ variable,
and allows you to read bytes from the request body.
#
See also: PEP 3333
if req.content_length in (None, 0):

Nothing to do
return

body = req.stream.read()
if not body:

raise falcon.HTTPBadRequest(title='Empty request body',
description='A valid JSON document is

→˓required.')

try:
req.context.doc = json.loads(body.decode('utf-8'))

except (ValueError, UnicodeDecodeError):
description = ('Could not decode the request body. The '

'JSON was incorrect or not encoded as '
'UTF-8.')

raise falcon.HTTPBadRequest(title='Malformed JSON',
description=description)

def process_response(self, req, resp, resource, req_succeeded):
if not hasattr(resp.context, 'result'):

return

resp.text = json.dumps(resp.context.result)

def max_body(limit):
(continues on next page)

5.1. User Guide 19

Falcon Documentation, Release 3.0.1

(continued from previous page)

def hook(req, resp, resource, params):
length = req.content_length
if length is not None and length > limit:

msg = ('The size of the request is too large. The body must not '
'exceed ' + str(limit) + ' bytes in length.')

raise falcon.HTTPPayloadTooLarge(
title='Request body is too large', description=msg)

return hook

class ThingsResource:

def __init__(self, db):
self.db = db
self.logger = logging.getLogger('thingsapp.' + __name__)

def on_get(self, req, resp, user_id):
marker = req.get_param('marker') or ''
limit = req.get_param_as_int('limit') or 50

try:
result = self.db.get_things(marker, limit)

except Exception as ex:
self.logger.error(ex)

description = ('Aliens have attacked our base! We will '
'be back as soon as we fight them off. '
'We appreciate your patience.')

raise falcon.HTTPServiceUnavailable(
title='Service Outage',
description=description,
retry_after=30)

NOTE: Normally you would use resp.media for this sort of thing;
this example serves only to demonstrate how the context can be
used to pass arbitrary values between middleware components,
hooks, and resources.
resp.context.result = result

resp.set_header('Powered-By', 'Falcon')
resp.status = falcon.HTTP_200

@falcon.before(max_body(64 * 1024))
def on_post(self, req, resp, user_id):

try:
doc = req.context.doc

except AttributeError:
raise falcon.HTTPBadRequest(

title='Missing thing',
description='A thing must be submitted in the request body.')

proper_thing = self.db.add_thing(doc)

(continues on next page)

20 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

(continued from previous page)

resp.status = falcon.HTTP_201
resp.location = '/%s/things/%s' % (user_id, proper_thing['id'])

Configure your WSGI server to load "things.app" (app is a WSGI callable)
app = falcon.App(middleware=[

AuthMiddleware(),
RequireJSON(),
JSONTranslator(),

])

db = StorageEngine()
things = ThingsResource(db)
app.add_route('/{user_id}/things', things)

If a responder ever raises an instance of StorageError, pass control to
the given handler.
app.add_error_handler(StorageError, StorageError.handle)

Proxy some things to another service; this example shows how you might
send parts of an API off to a legacy system that hasn't been upgraded
yet, or perhaps is a single cluster that all data centers have to share.
sink = SinkAdapter()
app.add_sink(sink, r'/search/(?P<engine>ddg|y)\Z')

Useful for debugging problems in your API; works with pdb.set_trace(). You
can also use Gunicorn to host your app. Gunicorn can be configured to
auto-restart workers when it detects a code change, and it also works
with pdb.
if __name__ == '__main__':

httpd = simple_server.make_server('127.0.0.1', 8000, app)
httpd.serve_forever()

Again this code uses wsgiref, but you can also run the above example using any WSGI server, such as uWSGI or
Gunicorn. For example:

$ pip install requests gunicorn
$ gunicorn things:app

On Windows you can run Gunicorn and uWSGI via WSL, or you might try Waitress:

$ pip install requests waitress
$ waitress-serve --port=8000 things:app

To test this example go to the another terminal and run:

$ http localhost:8000/1/things authorization:custom-token

To visualize the application configuration the Inspect Module can be used:

falcon-inspect-app things_advanced:app

This would print for this example application:

Falcon App (WSGI)
• Routes:

(continues on next page)

5.1. User Guide 21

Falcon Documentation, Release 3.0.1

(continued from previous page)

/{user_id}/things - ThingsResource:
GET - on_get
POST - on_post

• Middleware (Middleware are independent):
→ AuthMiddleware.process_request

→ RequireJSON.process_request
→ JSONTranslator.process_request

Process route responder

JSONTranslator.process_response
• Sinks:

/search/(?P<engine>ddg|y)\Z SinkAdapter
• Error handlers:

StorageError handle

Note that this example requires the httpx package in lieu of requests.

examples/things_advanced_asgi.py

import json
import logging
import uuid

import falcon
import falcon.asgi
import httpx

class StorageEngine:

async def get_things(self, marker, limit):
return [{'id': str(uuid.uuid4()), 'color': 'green'}]

async def add_thing(self, thing):
thing['id'] = str(uuid.uuid4())
return thing

class StorageError(Exception):

@staticmethod
async def handle(ex, req, resp, params):

TODO: Log the error, clean up, etc. before raising
raise falcon.HTTPInternalServerError()

class SinkAdapter:

engines = {
'ddg': 'https://duckduckgo.com',
'y': 'https://search.yahoo.com/search',

}

async def __call__(self, req, resp, engine):
url = self.engines[engine]
params = {'q': req.get_param('q', True)}

(continues on next page)

22 Chapter 5. Documentation

https://pypi.org/project/httpx/
https://pypi.org/project/requests/

Falcon Documentation, Release 3.0.1

(continued from previous page)

async with httpx.AsyncClient() as client:
result = await client.get(url, params=params)

resp.status = result.status_code
resp.content_type = result.headers['content-type']
resp.text = result.text

class AuthMiddleware:

async def process_request(self, req, resp):
token = req.get_header('Authorization')
account_id = req.get_header('Account-ID')

challenges = ['Token type="Fernet"']

if token is None:
description = ('Please provide an auth token '

'as part of the request.')

raise falcon.HTTPUnauthorized(title='Auth token required',
description=description,
challenges=challenges,
href='http://docs.example.com/auth')

if not self._token_is_valid(token, account_id):
description = ('The provided auth token is not valid. '

'Please request a new token and try again.')

raise falcon.HTTPUnauthorized(title='Authentication required',
description=description,
challenges=challenges,
href='http://docs.example.com/auth')

def _token_is_valid(self, token, account_id):
return True # Suuuuuure it's valid...

class RequireJSON:

async def process_request(self, req, resp):
if not req.client_accepts_json:

raise falcon.HTTPNotAcceptable(
description='This API only supports responses encoded as JSON.',
href='http://docs.examples.com/api/json')

if req.method in ('POST', 'PUT'):
if 'application/json' not in req.content_type:

raise falcon.HTTPUnsupportedMediaType(
description='This API only supports requests encoded as JSON.',
href='http://docs.examples.com/api/json')

class JSONTranslator:
NOTE: Normally you would simply use req.get_media() and resp.media for
this particular use case; this example serves only to illustrate

(continues on next page)

5.1. User Guide 23

Falcon Documentation, Release 3.0.1

(continued from previous page)

what is possible.

async def process_request(self, req, resp):
NOTE: Test explicitly for 0, since this property could be None in
the case that the Content-Length header is missing (in which case we
can't know if there is a body without actually attempting to read
it from the request stream.)
if req.content_length == 0:

Nothing to do
return

body = await req.stream.read()
if not body:

raise falcon.HTTPBadRequest(title='Empty request body',
description='A valid JSON document is

→˓required.')

try:
req.context.doc = json.loads(body.decode('utf-8'))

except (ValueError, UnicodeDecodeError):
description = ('Could not decode the request body. The '

'JSON was incorrect or not encoded as '
'UTF-8.')

raise falcon.HTTPBadRequest(title='Malformed JSON',
description=description)

async def process_response(self, req, resp, resource, req_succeeded):
if not hasattr(resp.context, 'result'):

return

resp.text = json.dumps(resp.context.result)

def max_body(limit):

async def hook(req, resp, resource, params):
length = req.content_length
if length is not None and length > limit:

msg = ('The size of the request is too large. The body must not '
'exceed ' + str(limit) + ' bytes in length.')

raise falcon.HTTPPayloadTooLarge(
title='Request body is too large', description=msg)

return hook

class ThingsResource:

def __init__(self, db):
self.db = db
self.logger = logging.getLogger('thingsapp.' + __name__)

async def on_get(self, req, resp, user_id):
marker = req.get_param('marker') or ''

(continues on next page)

24 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

(continued from previous page)

limit = req.get_param_as_int('limit') or 50

try:
result = await self.db.get_things(marker, limit)

except Exception as ex:
self.logger.error(ex)

description = ('Aliens have attacked our base! We will '
'be back as soon as we fight them off. '
'We appreciate your patience.')

raise falcon.HTTPServiceUnavailable(
title='Service Outage',
description=description,
retry_after=30)

NOTE: Normally you would use resp.media for this sort of thing;
this example serves only to demonstrate how the context can be
used to pass arbitrary values between middleware components,
hooks, and resources.
resp.context.result = result

resp.set_header('Powered-By', 'Falcon')
resp.status = falcon.HTTP_200

@falcon.before(max_body(64 * 1024))
async def on_post(self, req, resp, user_id):

try:
doc = req.context.doc

except AttributeError:
raise falcon.HTTPBadRequest(

title='Missing thing',
description='A thing must be submitted in the request body.')

proper_thing = await self.db.add_thing(doc)

resp.status = falcon.HTTP_201
resp.location = '/%s/things/%s' % (user_id, proper_thing['id'])

The app instance is an ASGI callable
app = falcon.asgi.App(middleware=[

AuthMiddleware(),
RequireJSON(),
JSONTranslator(),

])

db = StorageEngine()
things = ThingsResource(db)
app.add_route('/{user_id}/things', things)

If a responder ever raises an instance of StorageError, pass control to
the given handler.
app.add_error_handler(StorageError, StorageError.handle)

Proxy some things to another service; this example shows how you might
send parts of an API off to a legacy system that hasn't been upgraded

(continues on next page)

5.1. User Guide 25

Falcon Documentation, Release 3.0.1

(continued from previous page)

yet, or perhaps is a single cluster that all data centers have to share.
sink = SinkAdapter()
app.add_sink(sink, r'/search/(?P<engine>ddg|y)\Z')

You can run the ASGI version with any ASGI server, such as uvicorn:

$ pip install falcon httpx uvicorn
$ uvicorn things_advanced_asgi:app

5.1.4 Tutorial (WSGI)

In this tutorial we’ll walk through building an API for a simple image sharing service. Along the way, we’ll discuss
Falcon’s major features and introduce the terminology used by the framework.

Note: This tutorial covers the “traditional”, synchronous flavor of Falcon using the WSGI protocol.

Developing an async application? Check out our ASGI tutorial instead!

First Steps

The first thing we’ll do is install Falcon inside a fresh virtualenv. To that end, let’s create a new project folder called
“look”, and set up a virtual environment within it that we can use for the tutorial:

$ mkdir look
$ cd look
$ virtualenv .venv
$ source .venv/bin/activate
$ pip install falcon

It’s customary for the project’s top-level module to be called the same as the project, so let’s create another “look”
folder inside the first one and mark it as a python module by creating an empty __init__.py file in it:

$ mkdir look
$ touch look/__init__.py

Next, let’s create a new file that will be the entry point into your app:

$ touch look/app.py

The file hierarchy should now look like this:

look
.venv
look

__init__.py
app.py

Now, open app.py in your favorite text editor and add the following lines:

import falcon

app = application = falcon.App()

26 Chapter 5. Documentation

https://www.python.org/dev/peps/pep-3333/
http://docs.python-guide.org/en/latest/dev/virtualenvs/

Falcon Documentation, Release 3.0.1

This code creates your WSGI application and aliases it as app. You can use any variable names you like, but we’ll
use application since that is what Gunicorn, by default, expects it to be called (we’ll see how this works in the
next section of the tutorial).

Note: A WSGI application is just a callable with a well-defined signature so that you can host the application with
any web server that understands the WSGI protocol.

Next let’s take a look at the falcon.App class. Install IPython and fire it up:

$ pip install ipython
$ ipython

Now, type the following to introspect the falcon.App callable:

In [1]: import falcon

In [2]: falcon.App.__call__?

Alternatively, you can use the standard Python help() function:

In [3]: help(falcon.App.__call__)

Note the method signature. env and start_response are standard WSGI params. Falcon adds a thin abstraction
on top of these params so you don’t have to interact with them directly.

The Falcon framework contains extensive inline documentation that you can query using the above technique.

Tip: In addition to IPython, the Python community maintains several other super-powered REPLs that you may wish
to try, including bpython and ptpython.

Hosting Your App

Now that you have a simple Falcon app, you can take it for a spin with a WSGI server. Python includes a reference
server for self-hosting, but let’s use something more robust that you might use in production.

Open a new terminal and run the following:

$ source .venv/bin/activate
$ pip install gunicorn
$ gunicorn --reload look.app

(Note the use of the --reload option to tell Gunicorn to reload the app whenever its code changes.)

If you are a Windows user, Waitress can be used in lieu of Gunicorn, since the latter doesn’t work under Windows:

$ pip install waitress
$ waitress-serve --port=8000 look.app:app

Now, in a different terminal, try querying the running app with curl:

$ curl -v localhost:8000

You should get a 404. That’s actually OK, because we haven’t specified any routes yet. Falcon includes a default 404
response handler that will fire for any requested path for which a route does not exist.

5.1. User Guide 27

http://legacy.python.org/dev/peps/pep-3333/
http://ipython.org/
http://ipython.org/
http://bpython-interpreter.org/
https://github.com/jonathanslenders/ptpython

Falcon Documentation, Release 3.0.1

While curl certainly gets the job done, it can be a bit crufty to use. HTTPie is a modern, user-friendly alternative. Let’s
install HTTPie and use it from now on:

$ source .venv/bin/activate
$ pip install httpie
$ http localhost:8000

Creating Resources

Falcon’s design borrows several key concepts from the REST architectural style.

Central to both REST and the Falcon framework is the concept of a “resource”. Resources are simply all the things in
your API or application that can be accessed by a URL. For example, an event booking application may have resources
such as “ticket” and “venue”, while a video game backend may have resources such as “achievements” and “player”.

URLs provide a way for the client to uniquely identify resources. For example, /players might identify the “list
of all players” resource, while /players/45301f54 might identify the “individual player with ID 45301f54”, and
/players/45301f54/achievements the “list of all achievements for the player resource with ID 45301f54”.

POST /players/45301f54/achievements

Action Resource Identifier

In the REST architectural style, the URL only identifies the resource; it does not specify what action to take on that
resource. Instead, users choose from a set of standard methods. For HTTP, these are the familiar GET, POST, HEAD,
etc. Clients can query a resource to discover which methods it supports.

Note: This is one of the key differences between the REST and RPC architectural styles. REST applies a standard set
of verbs across any number of resources, as opposed to having each application define its own unique set of methods.

Depending on the requested action, the server may or may not return a representation to the client. Representations
may be encoded in any one of a number of Internet media types, such as JSON and HTML.

Falcon uses Python classes to represent resources. In practice, these classes act as controllers in your application.
They convert an incoming request into one or more internal actions, and then compose a response back to the client
based on the results of those actions.

request →
Resource Orchestrate the requested action
Controller Compose the result

response ←

A resource in Falcon is just a regular Python class that includes one or more methods representing the standard HTTP
verbs supported by that resource. Each requested URL is mapped to a specific resource.

Since we are building an image-sharing API, let’s start by creating an “images” resource. Create a new module,
images.py next to app.py, and add the following code to it:

import json

import falcon

(continues on next page)

28 Chapter 5. Documentation

https://github.com/jkbr/httpie

Falcon Documentation, Release 3.0.1

(continued from previous page)

class Resource:

def on_get(self, req, resp):
doc = {

'images': [
{

'href': '/images/1eaf6ef1-7f2d-4ecc-a8d5-6e8adba7cc0e.png'
}

]
}

Create a JSON representation of the resource
resp.text = json.dumps(doc, ensure_ascii=False)

The following line can be omitted because 200 is the default
status returned by the framework, but it is included here to
illustrate how this may be overridden as needed.
resp.status = falcon.HTTP_200

As you can see, Resource is just a regular class. You can name the class anything you like. Falcon uses duck-typing,
so you don’t need to inherit from any sort of special base class.

The image resource above defines a single method, on_get(). For any HTTP method you want your resource to
support, simply add an on_*() method to the class, where * is any one of the standard HTTP methods, lowercased
(e.g., on_get(), on_put(), on_head(), etc.).

Note: Supported HTTP methods are those specified in RFC 7231 and RFC 5789. This includes GET, HEAD, POST,
PUT, DELETE, CONNECT, OPTIONS, TRACE, and PATCH.

We call these well-known methods “responders”. Each responder takes (at least) two params, one representing the
HTTP request, and one representing the HTTP response to that request. By convention, these are called req and
resp, respectively. Route templates and hooks can inject extra params, as we shall see later on.

Right now, the image resource responds to GET requests with a simple 200 OK and a JSON body. Falcon’s Internet
media type defaults to application/json but you can set it to whatever you like. Noteworthy JSON alternatives
include YAML and MessagePack.

Next let’s wire up this resource and see it in action. Go back to app.py and modify it so that it looks something like
this:

import falcon

from .images import Resource

app = application = falcon.App()

images = Resource()
app.add_route('/images', images)

Now, when a request comes in for /images, Falcon will call the responder on the images resource that corresponds
to the requested HTTP method.

Let’s try it. Restart Gunicorn (unless you’re using --reload), and send a GET request to the resource:

5.1. User Guide 29

https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc5789
http://yaml.org/
http://msgpack.org/

Falcon Documentation, Release 3.0.1

$ http localhost:8000/images

You should receive a 200 OK response, including a JSON-encoded representation of the “images” resource.

Note: add_route() expects an instance of the resource class, not the class itself. The same instance is used for
all requests. This strategy improves performance and reduces memory usage, but this also means that if you host your
application with a threaded web server, resources and their dependencies must be thread-safe.

We can use the the Inspect Module to visualize the application configuration:

falcon-inspect-app look.app:app

This prints the following, correctly indicating that we are handling GET requests in the /images route:

Falcon App (WSGI)
• Routes:

/images - Resource:
GET - on_get

So far we have only implemented a responder for GET. Let’s see what happens when a different method is requested:

$ http PUT localhost:8000/images

This time you should get back 405 Method Not Allowed, since the resource does not support the PUT method.
Note the value of the Allow header:

allow: GET, OPTIONS

This is generated automatically by Falcon based on the set of methods implemented by the target resource. If a
resource does not include its own OPTIONS responder, the framework provides a default implementation. Therefore,
OPTIONS is always included in the list of allowable methods.

Note: If you have a lot of experience with other Python web frameworks, you may be used to using decorators to set
up your routes. Falcon’s particular approach provides the following benefits:

• The URL structure of the application is centralized. This makes it easier to reason about and maintain the API
over time.

• The use of resource classes maps somewhat naturally to the REST architectural style, in which a URL is used
to identify a resource only, not the action to perform on that resource.

• Resource class methods provide a uniform interface that does not have to be reinvented (and maintained) from
class to class and application to application.

Next, just for fun, let’s modify our resource to use MessagePack instead of JSON. Start by installing the relevant
package:

$ pip install msgpack-python

Then, update the responder to use the new media type:

import falcon

import msgpack

(continues on next page)

30 Chapter 5. Documentation

http://msgpack.org/

Falcon Documentation, Release 3.0.1

(continued from previous page)

class Resource:

def on_get(self, req, resp):
doc = {

'images': [
{

'href': '/images/1eaf6ef1-7f2d-4ecc-a8d5-6e8adba7cc0e.png'
}

]
}

resp.data = msgpack.packb(doc, use_bin_type=True)
resp.content_type = falcon.MEDIA_MSGPACK
resp.status = falcon.HTTP_200

Note the use of resp.data in lieu of resp.text. If you assign a bytestring to the latter, Falcon will figure it out,
but you can realize a small performance gain by assigning directly to resp.data.

Also note the use of falcon.MEDIA_MSGPACK. The falcon module provides a number of constants for
common media types, including falcon.MEDIA_JSON, falcon.MEDIA_MSGPACK, falcon.MEDIA_YAML,
falcon.MEDIA_XML, falcon.MEDIA_HTML, falcon.MEDIA_JS, falcon.MEDIA_TEXT, falcon.
MEDIA_JPEG, falcon.MEDIA_PNG, and falcon.MEDIA_GIF.

Restart Gunicorn (unless you’re using --reload), and then try sending a GET request to the revised resource:

$ http localhost:8000/images

Testing your application

Fully exercising your code is critical to creating a robust application. Let’s take a moment to write a test for what’s
been implemented so far.

First, create a tests directory with __init__.py and a test module (test_app.py) inside it. The project’s
structure should now look like this:

look
.venv
look

__init__.py
app.py
images.py

tests
__init__.py
test_app.py

Falcon supports testing its App object by simulating HTTP requests.

Tests can either be written using Python’s standard unittest module, or with any of a number of third-party testing
frameworks, such as pytest. For this tutorial we’ll use pytest since it allows for more pythonic test code as compared
to the JUnit-inspired unittest module.

Let’s start by installing the pytest package:

$ pip install pytest

5.1. User Guide 31

https://docs.python.org/3/library/unittest.html#module-unittest
http://docs.pytest.org/en/latest/
http://docs.pytest.org/en/latest/
https://docs.python.org/3/library/unittest.html#module-unittest
http://docs.pytest.org/en/latest/

Falcon Documentation, Release 3.0.1

Next, edit test_app.py to look like this:

import falcon
from falcon import testing
import msgpack
import pytest

from look.app import app

@pytest.fixture
def client():

return testing.TestClient(app)

pytest will inject the object returned by the "client" function
as an additional parameter.
def test_list_images(client):

doc = {
'images': [

{
'href': '/images/1eaf6ef1-7f2d-4ecc-a8d5-6e8adba7cc0e.png'

}
]

}

response = client.simulate_get('/images')
result_doc = msgpack.unpackb(response.content, raw=False)

assert result_doc == doc
assert response.status == falcon.HTTP_OK

From the main project directory, exercise your new test by running pytest against the tests directory:

$ pytest tests

If pytest reports any errors, take a moment to fix them up before proceeding to the next section of the tutorial.

Request and Response Objects

Each responder in a resource receives a Request object that can be used to read the headers, query parameters, and
body of the request. You can use the standard help() function or IPython’s magic ? function to list the attributes
and methods of Falcon’s Request class:

In [1]: import falcon

In [2]: falcon.Request?

Each responder also receives a Response object that can be used for setting the status code, headers, and body of
the response:

In [3]: falcon.Response?

This will be useful when creating a POST endpoint in the application that can add new image resources to our collec-
tion. We’ll tackle this functionality next.

We’ll use TDD this time around, to demonstrate how to apply this particular testing strategy when developing a Falcon

32 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

application. Via tests, we’ll first define precisely what we want the application to do, and then code until the tests tell
us that we’re done.

Note: To learn more about TDD, you may wish to check out one of the many books on the topic, such as Test Driven
Development with Python. The examples in this particular book use the Django framework and even JavaScript, but
the author covers a number of testing principles that are widely applicable.

Let’s start by adding an additional import statement to test_app.py. We need to import two modules from
unittest.mock:

from unittest.mock import mock_open, call

Now add the following test:

"monkeypatch" is a special built-in pytest fixture that can be
used to install mocks.
def test_posted_image_gets_saved(client, monkeypatch):

mock_file_open = mock_open()
monkeypatch.setattr('io.open', mock_file_open)

fake_uuid = '123e4567-e89b-12d3-a456-426655440000'
monkeypatch.setattr('uuid.uuid4', lambda: fake_uuid)

When the service receives an image through POST...
fake_image_bytes = b'fake-image-bytes'
response = client.simulate_post(

'/images',
body=fake_image_bytes,
headers={'content-type': 'image/png'}

)

...it must return a 201 code, save the file, and return the
image's resource location.
assert response.status == falcon.HTTP_CREATED
assert call().write(fake_image_bytes) in mock_file_open.mock_calls
assert response.headers['location'] == '/images/{}.png'.format(fake_uuid)

As you can see, this test relies heavily on mocking, making it somewhat fragile in the face of implementation changes.
We’ll revisit this later. For now, run the tests again and watch to make sure they fail. A key step in the TDD workflow
is verifying that your tests do not pass before moving on to the implementation:

$ pytest tests

To make the new test pass, we need to add a new method for handling POSTs. Open images.py and add a POST
responder to the Resource class as follows:

import io
import os
import uuid
import mimetypes

import falcon
import msgpack

class Resource:
(continues on next page)

5.1. User Guide 33

http://www.obeythetestinggoat.com/pages/book.html
http://www.obeythetestinggoat.com/pages/book.html

Falcon Documentation, Release 3.0.1

(continued from previous page)

_CHUNK_SIZE_BYTES = 4096

The resource object must now be initialized with a path used during POST
def __init__(self, storage_path):

self._storage_path = storage_path

This is the method we implemented before
def on_get(self, req, resp):

doc = {
'images': [

{
'href': '/images/1eaf6ef1-7f2d-4ecc-a8d5-6e8adba7cc0e.png'

}
]

}

resp.data = msgpack.packb(doc, use_bin_type=True)
resp.content_type = falcon.MEDIA_MSGPACK
resp.status = falcon.HTTP_200

def on_post(self, req, resp):
ext = mimetypes.guess_extension(req.content_type)
name = '{uuid}{ext}'.format(uuid=uuid.uuid4(), ext=ext)
image_path = os.path.join(self._storage_path, name)

with io.open(image_path, 'wb') as image_file:
while True:

chunk = req.stream.read(self._CHUNK_SIZE_BYTES)
if not chunk:

break

image_file.write(chunk)

resp.status = falcon.HTTP_201
resp.location = '/images/' + name

As you can see, we generate a unique name for the image, and then write it out by reading from req.stream. It’s
called stream instead of body to emphasize the fact that you are really reading from an input stream; by default
Falcon does not spool or decode request data, instead giving you direct access to the incoming binary stream provided
by the WSGI server.

Note the use of falcon.HTTP_201 for setting the response status to “201 Created”. We could have also used
the falcon.HTTP_CREATED alias. For a full list of predefined status strings, simply call help() on falcon.
status_codes:

In [4]: help(falcon.status_codes)

The last line in the on_post() responder sets the Location header for the newly created resource. (We will create a
route for that path in just a minute.) The Request and Response classes contain convenient attributes for reading
and setting common headers, but you can always access any header by name with the req.get_header() and
resp.set_header() methods.

Take a moment to run pytest again to check your progress:

$ pytest tests

34 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

You should see a TypeError as a consequence of adding the storage_path parameter to Resource.
__init__().

To fix this, simply edit app.py and pass in a path to the initializer. For now, just use the working directory from
which you started the service:

images = Resource(storage_path='.')

Try running the tests again. This time, they should pass with flying colors!

$ pytest tests

Finally, restart Gunicorn and then try sending a POST request to the resource from the command line (substituting
test.png for a path to any PNG you like.)

$ http POST localhost:8000/images Content-Type:image/png < test.png

Now, if you check your storage directory, it should contain a copy of the image you just POSTed.

Upward and onward!

Refactoring for testability

Earlier we pointed out that our POST test relied heavily on mocking, relying on assumptions that may or may not hold
true as the code evolves. To mitigate this problem, we’ll not only have to refactor the tests, but also the application
itself.

We’ll start by factoring out the business logic from the resource’s POST responder in images.py so that it can be
tested independently. In this case, the resource’s “business logic” is simply the image-saving operation:

import io
import mimetypes
import os
import uuid

import falcon
import msgpack

class Resource:

def __init__(self, image_store):
self._image_store = image_store

def on_get(self, req, resp):
doc = {

'images': [
{

'href': '/images/1eaf6ef1-7f2d-4ecc-a8d5-6e8adba7cc0e.png'
}

]
}

resp.data = msgpack.packb(doc, use_bin_type=True)
resp.content_type = falcon.MEDIA_MSGPACK
resp.status = falcon.HTTP_200

(continues on next page)

5.1. User Guide 35

Falcon Documentation, Release 3.0.1

(continued from previous page)

def on_post(self, req, resp):
name = self._image_store.save(req.stream, req.content_type)
resp.status = falcon.HTTP_201
resp.location = '/images/' + name

class ImageStore:

_CHUNK_SIZE_BYTES = 4096

Note the use of dependency injection for standard library
methods. We'll use these later to avoid monkey-patching.
def __init__(self, storage_path, uuidgen=uuid.uuid4, fopen=io.open):

self._storage_path = storage_path
self._uuidgen = uuidgen
self._fopen = fopen

def save(self, image_stream, image_content_type):
ext = mimetypes.guess_extension(image_content_type)
name = '{uuid}{ext}'.format(uuid=self._uuidgen(), ext=ext)
image_path = os.path.join(self._storage_path, name)

with self._fopen(image_path, 'wb') as image_file:
while True:

chunk = image_stream.read(self._CHUNK_SIZE_BYTES)
if not chunk:

break

image_file.write(chunk)

return name

Let’s check to see if we broke anything with the changes above:

$ pytest tests

Hmm, it looks like we forgot to update app.py. Let’s do that now:

import falcon

from .images import ImageStore, Resource

app = application = falcon.App()

image_store = ImageStore('.')
images = Resource(image_store)
app.add_route('/images', images)

Let’s try again:

$ pytest tests

Now you should see a failed test assertion regarding mock_file_open. To fix this, we need to switch our strategy
from monkey-patching to dependency injection. Return to app.py and modify it to look similar to the following:

36 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

import falcon

from .images import ImageStore, Resource

def create_app(image_store):
image_resource = Resource(image_store)
app = falcon.App()
app.add_route('/images', image_resource)
return app

def get_app():
image_store = ImageStore('.')
return create_app(image_store)

As you can see, the bulk of the setup logic has been moved to create_app(), which can be used to obtain an App
object either for testing or for hosting in production. get_app() takes care of instantiating additional resources and
configuring the application for hosting.

The command to run the application is now:

$ gunicorn --reload 'look.app:get_app()'

Finally, we need to update the test code. Modify test_app.py to look similar to this:

import io
from wsgiref.validate import InputWrapper

from unittest.mock import call, MagicMock, mock_open

import falcon
from falcon import testing
import msgpack
import pytest

import look.app
import look.images

@pytest.fixture
def mock_store():

return MagicMock()

@pytest.fixture
def client(mock_store):

app = look.app.create_app(mock_store)
return testing.TestClient(app)

def test_list_images(client):
doc = {

'images': [
{

'href': '/images/1eaf6ef1-7f2d-4ecc-a8d5-6e8adba7cc0e.png'
}

(continues on next page)

5.1. User Guide 37

Falcon Documentation, Release 3.0.1

(continued from previous page)

]
}

response = client.simulate_get('/images')
result_doc = msgpack.unpackb(response.content, raw=False)

assert result_doc == doc
assert response.status == falcon.HTTP_OK

With clever composition of fixtures, we can observe what happens with
the mock injected into the image resource.
def test_post_image(client, mock_store):

file_name = 'fake-image-name.xyz'

We need to know what ImageStore method will be used
mock_store.save.return_value = file_name
image_content_type = 'image/xyz'

response = client.simulate_post(
'/images',
body=b'some-fake-bytes',
headers={'content-type': image_content_type}

)

assert response.status == falcon.HTTP_CREATED
assert response.headers['location'] == '/images/{}'.format(file_name)
saver_call = mock_store.save.call_args

saver_call is a unittest.mock.call tuple. It's first element is a
tuple of positional arguments supplied when calling the mock.
assert isinstance(saver_call[0][0], InputWrapper)
assert saver_call[0][1] == image_content_type

As you can see, we’ve redone the POST. While there are fewer mocks, the assertions have gotten more elaborate to
properly check interactions at the interface boundaries.

Let’s check our progress:

$ pytest tests

All green! But since we used a mock, we’re no longer covering the actual saving of the image. Let’s add a test for that:

def test_saving_image(monkeypatch):
This still has some mocks, but they are more localized and do not
have to be monkey-patched into standard library modules (always a
risky business).
mock_file_open = mock_open()

fake_uuid = '123e4567-e89b-12d3-a456-426655440000'
def mock_uuidgen():

return fake_uuid

fake_image_bytes = b'fake-image-bytes'
fake_request_stream = io.BytesIO(fake_image_bytes)
storage_path = 'fake-storage-path'
store = look.images.ImageStore(

(continues on next page)

38 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

(continued from previous page)

storage_path,
uuidgen=mock_uuidgen,
fopen=mock_file_open

)

assert store.save(fake_request_stream, 'image/png') == fake_uuid + '.png'
assert call().write(fake_image_bytes) in mock_file_open.mock_calls

Now give it a try:

$ pytest tests -k test_saving_image

Like the former test, this one still uses mocks. But the structure of the code has been improved through the techniques
of componentization and dependency inversion, making the application more flexible and testable.

Tip: Checking code coverage would have helped us detect the missing test above; it’s always a good idea to include
coverage testing in your workflow to ensure you don’t have any bugs hiding off somewhere in an unexercised code
path.

Functional tests

Functional tests define the application’s behavior from the outside. When using TDD, this can be a more natural place
to start as opposed to lower-level unit testing, since it is difficult to anticipate what internal interfaces and components
are needed in advance of defining the application’s user-facing functionality.

In the case of the refactoring work from the last section, we could have inadvertently introduced a functional bug into
the application that our unit tests would not have caught. This can happen when a bug is a result of an unexpected
interaction between multiple units, between the application and the web server, or between the application and any
external services it depends on.

With test helpers such as simulate_get() and simulate_post(), we can create tests that span multiple units.
But we can also go one step further and run the application as a normal, separate process (e.g. with Gunicorn). We
can then write tests that interact with the running process through HTTP, behaving like a normal client.

Let’s see this in action. Create a new test module, tests/test_integration.py with the following contents:

import os

import requests

def test_posted_image_gets_saved():
file_save_prefix = '/tmp/'
location_prefix = '/images/'
fake_image_bytes = b'fake-image-bytes'

response = requests.post(
'http://localhost:8000/images',
data=fake_image_bytes,
headers={'content-type': 'image/png'}

)

assert response.status_code == 201
location = response.headers['location']

(continues on next page)

5.1. User Guide 39

https://coverage.readthedocs.io/

Falcon Documentation, Release 3.0.1

(continued from previous page)

assert location.startswith(location_prefix)
image_name = location.replace(location_prefix, '')

file_path = file_save_prefix + image_name
with open(file_path, 'rb') as image_file:

assert image_file.read() == fake_image_bytes

os.remove(file_path)

Next, install the requests package (as required by the new test) and make sure Gunicorn is up and running:

$ pip install requests
$ gunicorn 'look.app:get_app()'

Then, in another terminal, try running the new test:

$ pytest tests -k test_posted_image_gets_saved

The test will fail since it expects the image file to reside under /tmp. To fix this, modify app.py to add the ability
to configure the image storage directory with an environment variable:

import os

import falcon

from .images import ImageStore, Resource

def create_app(image_store):
image_resource = Resource(image_store)
app = falcon.App()
app.add_route('/images', image_resource)
return app

def get_app():
storage_path = os.environ.get('LOOK_STORAGE_PATH', '.')
image_store = ImageStore(storage_path)
return create_app(image_store)

Now you can re-run the app against the desired storage directory:

$ LOOK_STORAGE_PATH=/tmp gunicorn --reload 'look.app:get_app()'

You should now be able to re-run the test and see it succeed:

$ pytest tests -k test_posted_image_gets_saved

Note: The above process of starting, testing, stopping, and cleaning up after each test run can (and really should)
be automated. Depending on your needs, you can develop your own automation fixtures, or use a library such as
mountepy.

Many developers choose to write tests like the above to sanity-check their application’s primary functionality, while
leaving the bulk of testing to simulated requests and unit tests. These latter types of tests generally execute much

40 Chapter 5. Documentation

https://github.com/butla/mountepy

Falcon Documentation, Release 3.0.1

faster and facilitate more fine-grained test assertions as compared to higher-level functional and system tests. That
being said, testing strategies vary widely and you should choose the one that best suits your needs.

At this point, you should have a good grip on how to apply common testing strategies to your Falcon application. For
the sake of brevity we’ll omit further testing instructions from the following sections, focusing instead on showcasing
more of Falcon’s features.

Serving Images

Now that we have a way of getting images into the service, we of course need a way to get them back out. What we
want to do is return an image when it is requested, using the path that came back in the Location header.

Try executing the following:

$ http localhost:8000/images/db79e518-c8d3-4a87-93fe-38b620f9d410.png

In response, you should get a 404 Not Found. This is the default response given by Falcon when it can not find a
resource that matches the requested URL path.

Let’s address this by creating a separate class to represent a single image resource. We will then add an on_get()
method to respond to the path above.

Go ahead and edit your images.py file to look something like this:

import io
import os
import re
import uuid
import mimetypes

import falcon
import msgpack

class Collection:

def __init__(self, image_store):
self._image_store = image_store

def on_get(self, req, resp):
TODO: Modify this to return a list of href's based on
what images are actually available.
doc = {

'images': [
{

'href': '/images/1eaf6ef1-7f2d-4ecc-a8d5-6e8adba7cc0e.png'
}

]
}

resp.data = msgpack.packb(doc, use_bin_type=True)
resp.content_type = falcon.MEDIA_MSGPACK
resp.status = falcon.HTTP_200

def on_post(self, req, resp):
name = self._image_store.save(req.stream, req.content_type)
resp.status = falcon.HTTP_201
resp.location = '/images/' + name

(continues on next page)

5.1. User Guide 41

Falcon Documentation, Release 3.0.1

(continued from previous page)

class Item:

def __init__(self, image_store):
self._image_store = image_store

def on_get(self, req, resp, name):
resp.content_type = mimetypes.guess_type(name)[0]
resp.stream, resp.content_length = self._image_store.open(name)

class ImageStore:

_CHUNK_SIZE_BYTES = 4096
_IMAGE_NAME_PATTERN = re.compile(

'[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}\.[a-z]{2,4}$'
)

def __init__(self, storage_path, uuidgen=uuid.uuid4, fopen=io.open):
self._storage_path = storage_path
self._uuidgen = uuidgen
self._fopen = fopen

def save(self, image_stream, image_content_type):
ext = mimetypes.guess_extension(image_content_type)
name = '{uuid}{ext}'.format(uuid=self._uuidgen(), ext=ext)
image_path = os.path.join(self._storage_path, name)

with self._fopen(image_path, 'wb') as image_file:
while True:

chunk = image_stream.read(self._CHUNK_SIZE_BYTES)
if not chunk:

break

image_file.write(chunk)

return name

def open(self, name):
Always validate untrusted input!
if not self._IMAGE_NAME_PATTERN.match(name):

raise IOError('File not found')

image_path = os.path.join(self._storage_path, name)
stream = self._fopen(image_path, 'rb')
content_length = os.path.getsize(image_path)

return stream, content_length

As you can see, we renamed Resource to Collection and added a new Item class to represent a single image
resource. Alternatively, these two classes could be consolidated into one by using suffixed responders. (See also:
add_route())

Also, note the name parameter for the on_get() responder. Any URI parameters that you specify in your routes
will be turned into corresponding kwargs and passed into the target responder as such. We’ll see how to specify URI
parameters in a moment.

42 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

Inside the on_get() responder, we set the Content-Type header based on the filename extension, and then stream
out the image directly from an open file handle. Note the use of resp.content_length. Whenever using resp.
stream instead of resp.text or resp.data, you typically also specify the expected length of the stream using
the Content-Length header, so that the web client knows how much data to read from the response.

Note: If you do not know the size of the stream in advance, you can work around that by using chunked encoding,
but that’s beyond the scope of this tutorial.

If resp.status is not set explicitly, it defaults to 200 OK, which is exactly what we want on_get() to do.

Now let’s wire everything up and give it a try. Edit app.py to look similar to the following:

import os

import falcon

import images

def create_app(image_store):
app = falcon.App()
app.add_route('/images', images.Collection(image_store))
app.add_route('/images/{name}', images.Item(image_store))
return app

def get_app():
storage_path = os.environ.get('LOOK_STORAGE_PATH', '.')
image_store = images.ImageStore(storage_path)
return create_app(image_store)

As you can see, we specified a new route, /images/{name}. This causes Falcon to expect all associated responders
to accept a name argument.

Note: Falcon also supports more complex parameterized path segments that contain multiple values. For example, a
version control API might use the following route template for diffing two code branches:

/repos/{org}/{repo}/compare/{usr0}:{branch0}...{usr1}:{branch1}

Now re-run your app and try to POST another picture:

$ http POST localhost:8000/images Content-Type:image/png < test.png

Make a note of the path returned in the Location header, and use it to GET the image:

$ http localhost:8000/images/dddff30e-d2a6-4b57-be6a-b985ee67fa87.png

HTTPie won’t display the image, but you can see that the response headers were set correctly. Just for fun, go ahead
and paste the above URI into your browser. The image should display correctly.

Inspecting the application now returns:

falcon-inspect-app look.app:get_app

5.1. User Guide 43

Falcon Documentation, Release 3.0.1

Falcon App (WSGI)
• Routes:

/images - Collection:
GET - on_get
POST - on_post

/images/{name} - Item:
GET - on_get

Introducing Hooks

At this point you should have a pretty good understanding of the basic parts that make up a Falcon-based API. Before
we finish up, let’s just take a few minutes to clean up the code and add some error handling.

First, let’s check the incoming media type when something is posted to make sure it is a common image type. We’ll
implement this with a before hook.

Start by defining a list of media types the service will accept. Place this constant near the top, just after the import
statements in images.py:

ALLOWED_IMAGE_TYPES = (
'image/gif',
'image/jpeg',
'image/png',

)

The idea here is to only accept GIF, JPEG, and PNG images. You can add others to the list if you like.

Next, let’s create a hook that will run before each request to post a message. Add this method below the definition of
ALLOWED_IMAGE_TYPES:

def validate_image_type(req, resp, resource, params):
if req.content_type not in ALLOWED_IMAGE_TYPES:

msg = 'Image type not allowed. Must be PNG, JPEG, or GIF'
raise falcon.HTTPBadRequest(title='Bad request', description=msg)

And then attach the hook to the on_post() responder:

@falcon.before(validate_image_type)
def on_post(self, req, resp):

pass

Now, before every call to that responder, Falcon will first invoke validate_image_type(). There isn’t anything
special about this function, other than it must accept four arguments. Every hook takes, as its first two arguments, a
reference to the same req and resp objects that are passed into responders. The resource argument is a Resource
instance associated with the request. The fourth argument, named params by convention, is a reference to the kwarg
dictionary Falcon creates for each request. params will contain the route’s URI template params and their values, if
any.

As you can see in the example above, you can use req to get information about the incoming request. However, you
can also use resp to play with the HTTP response as needed, and you can even use hooks to inject extra kwargs:

def extract_project_id(req, resp, resource, params):
"""Adds `project_id` to the list of params for all responders.

Meant to be used as a `before` hook.
"""
params['project_id'] = req.get_header('X-PROJECT-ID')

44 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

Now, you might imagine that such a hook should apply to all responders for a resource. In fact, hooks can be applied
to an entire resource by simply decorating the class:

@falcon.before(extract_project_id)
class Message:

pass

Similar logic can be applied globally with middleware. (See also: falcon.middleware)

Now that you’ve added a hook to validate the media type, you can see it in action by attempting to POST something
nefarious:

$ http POST localhost:8000/images Content-Type:image/jpx

You should get back a 400 Bad Request status and a nicely structured error body.

Tip: When something goes wrong, you usually want to give your users some info to help them resolve the issue.
The exception to this rule is when an error occurs because the user is requested something they are not authorized to
access. In that case, you may wish to simply return 404 Not Found with an empty body, in case a malicious user
is fishing for information that will help them crack your app.

Check out the hooks reference to learn more.

Error Handling

Generally speaking, Falcon assumes that resource responders (on_get(), on_post(), etc.) will, for the most part,
do the right thing. In other words, Falcon doesn’t try very hard to protect responder code from itself.

This approach reduces the number of (often) extraneous checks that Falcon would otherwise have to perform, making
the framework more efficient. With that in mind, writing a high-quality API based on Falcon requires that:

1. Resource responders set response variables to sane values.

2. Untrusted input (i.e., input from an external client or service) is validated.

3. Your code is well-tested, with high code coverage.

4. Errors are anticipated, detected, logged, and handled appropriately within each responder or by global error
handling hooks.

When it comes to error handling, you can always directly set the error status, appropriate response headers, and error
body using the resp object. However, Falcon tries to make things a little easier by providing a set of error classes
you can raise when something goes wrong. Falcon will convert any instance or subclass of falcon.HTTPError
raised by a responder, hook, or middleware component into an appropriate HTTP response.

You may raise an instance of falcon.HTTPError directly, or use any one of a number of predefined errors that
are designed to set the response headers and body appropriately for each error type.

Tip: Error handlers may be registered for any type, including HTTPError. This feature provides a central location
for logging and otherwise handling exceptions raised by responders, hooks, and middleware components.

See also: add_error_handler().

Let’s see a quick example of how this works. Try requesting an invalid image name from your application:

$ http localhost:8000/images/voltron.png

5.1. User Guide 45

Falcon Documentation, Release 3.0.1

As you can see, the result isn’t exactly graceful. To fix this, we’ll need to add some exception handling. Modify your
Item class as follows:

class Item:

def __init__(self, image_store):
self._image_store = image_store

def on_get(self, req, resp, name):
resp.content_type = mimetypes.guess_type(name)[0]

try:
resp.stream, resp.content_length = self._image_store.open(name)

except IOError:
Normally you would also log the error.
raise falcon.HTTPNotFound()

Now let’s try that request again:

$ http localhost:8000/images/voltron.png

Additional information about error handling is available in the error handling reference.

What Now?

Our friendly community is available to answer your questions and help you work through sticky problems. See also:
Getting Help.

As mentioned previously, Falcon’s docstrings are quite extensive, and so you can learn a lot just by poking around
Falcon’s modules from a Python REPL, such as IPython or bpython.

Also, don’t be shy about pulling up Falcon’s source code on GitHub or in your favorite text editor. The team has tried
to make the code as straightforward and readable as possible; where other documentation may fall short, the code
basically can’t be wrong.

A number of Falcon add-ons, templates, and complementary packages are available for use in your projects. We’ve
listed several of these on the Falcon wiki as a starting point, but you may also wish to search PyPI for additional
resources.

5.1.5 Tutorial (ASGI)

In this tutorial we’ll walk through building an API for a simple image sharing service. Along the way, we’ll discuss
the basic anatomy of an asynchronous Falcon application: responders, routing, middleware, executing synchronous
functions in an executor, and more!

Note: This tutorial covers the asynchronous flavor of Falcon using the ASGI protocol.

Synchronous (WSGI) Falcon application development is covered in our WSGI tutorial.

New Falcon users may also want to choose the WSGI flavor to familiarize themselves with Falcon’s basic concepts.

46 Chapter 5. Documentation

http://ipython.org/
http://bpython-interpreter.org/
https://github.com/falconry/falcon/wiki
https://asgi.readthedocs.io/en/latest/
https://www.python.org/dev/peps/pep-3333/

Falcon Documentation, Release 3.0.1

First Steps

Let’s start by creating a fresh environment and the corresponding project directory structure, along the lines of First
Steps from the WSGI tutorial:

asgilook
.venv
asgilook

__init__.py
app.py

We’ll create a virtualenv using the venv module from the standard library (Falcon requires Python 3.6+ for ASGI):

$ mkdir asgilook
$ python3 -m venv asgilook/.venv
$ source asgilook/.venv/bin/activate

Note: If your Python distribution does not happen to include the venv module, you can always install and use
virtualenv instead.

Tip: Some of us find it convenient to manage virtualenvs with virtualenvwrapper or pipenv, particularly when it
comes to hopping between several environments.

Next, install Falcon into your virtualenv. ASGI support requires version 3.0 or higher:

$ pip install "falcon>=3.*"

You can then create a basic Falcon ASGI application by adding an asgilook/app.py module with the
following contents:

import falcon.asgi

app = falcon.asgi.App()

As in the WSGI tutorial’s introduction, let’s not forget to mark asgilook as a Python package:

$ touch asgilook/__init__.py

Hosting Our App

For running our async application, we’ll need an ASGI application server. Popular choices include:

• Uvicorn

• Daphne

• Hypercorn

For a simple tutorial application like ours, any of the above should do. Let’s pick the popular uvicorn for now:

$ pip install uvicorn

See also: ASGI Server Installation.

While we’re at it, let’s install the handy HTTPie HTTP client to help us excercise our app:

5.1. User Guide 47

https://virtualenv.pypa.io/
https://virtualenvwrapper.readthedocs.io
https://pipenv.pypa.io/
https://asgi.readthedocs.io/
https://www.uvicorn.org/
https://github.com/django/daphne/
https://pgjones.gitlab.io/hypercorn/
https://github.com/jakubroztocil/httpie

Falcon Documentation, Release 3.0.1

$ pip install httpie

Now let’s try loading our application:

$ uvicorn asgilook.app:app
INFO: Started server process [2020]
INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO: Waiting for application startup.
INFO: Application startup complete.

We can verify it works by trying to access the URL provided above by uvicorn:

$ http http://127.0.0.1:8000
HTTP/1.1 404 Not Found
content-length: 0
content-type: application/json
date: Sun, 05 Jul 2020 13:37:01 GMT
server: uvicorn

Woohoo, it works!!!

Well, sort of. Onwards to adding some real functionality!

Configuration

Next, let’s make our app configurable by allowing the user to modify the file system path where images are stored.
We’ll also allow the UUID generator to be customized.

As Falcon does not prescribe a specific configuration library or strategy, we are free to choose our own adventure (see
also a related question in our FAQ: What is the recommended approach for app configuration?).

In this tutorial, we’ll just pass around a Config instance to resource initializers for easier testing (coming later in this
tutorial). Create a new module, config.py next to app.py, and add the following code to it:

import os
import pathlib
import uuid

class Config:
DEFAULT_CONFIG_PATH = '/tmp/asgilook'
DEFAULT_UUID_GENERATOR = uuid.uuid4

def __init__(self):
self.storage_path = pathlib.Path(

os.environ.get('ASGI_LOOK_STORAGE_PATH', self.DEFAULT_CONFIG_PATH))
self.storage_path.mkdir(parents=True, exist_ok=True)

self.uuid_generator = Config.DEFAULT_UUID_GENERATOR

48 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

Image Store

Since we are going to read and write image files, care must be taken to avoid blocking the app during I/O. We’ll give
aiofiles a try:

pip install aiofiles

In addition, let’s twist the original WSGI “Look” design a bit, and convert all uploaded images to JPEG with the
popular Pillow library:

pip install Pillow

We can now implement a basic async image store. Save the following code as store.py next to app.py and
config.py:

import asyncio
import datetime
import io

import aiofiles
import falcon
import PIL.Image

class Image:

def __init__(self, config, image_id, size):
self._config = config

self.image_id = image_id
self.size = size
self.modified = datetime.datetime.utcnow()

@property
def path(self):

return self._config.storage_path / self.image_id

@property
def uri(self):

return f'/images/{self.image_id}.jpeg'

def serialize(self):
return {

'id': self.image_id,
'image': self.uri,
'modified': falcon.dt_to_http(self.modified),
'size': self.size,

}

class Store:

def __init__(self, config):
self._config = config
self._images = {}

def _load_from_bytes(self, data):

(continues on next page)

5.1. User Guide 49

https://pillow.readthedocs.io/

Falcon Documentation, Release 3.0.1

(continued from previous page)

return PIL.Image.open(io.BytesIO(data))

def _convert(self, image):
rgb_image = image.convert('RGB')

converted = io.BytesIO()
rgb_image.save(converted, 'JPEG')
return converted.getvalue()

def get(self, image_id):
return self._images.get(image_id)

def list_images(self):
return sorted(self._images.values(), key=lambda item: item.modified)

async def save(self, image_id, data):
loop = asyncio.get_running_loop()
image = await loop.run_in_executor(None, self._load_from_bytes, data)
converted = await loop.run_in_executor(None, self._convert, image)

path = self._config.storage_path / image_id
async with aiofiles.open(path, 'wb') as output:

await output.write(converted)

stored = Image(self._config, image_id, image.size)
self._images[image_id] = stored
return stored

Here we store data using aiofiles, and run Pillow image transformation functions in the default
ThreadPoolExecutor, hoping that at least some of these image operations release the GIL during processing.

Note: The ProcessPoolExecutor is another alternative for long running tasks that do not release the
GIL, such as CPU-bound pure Python code. Note, however, that ProcessPoolExecutor builds upon the
multiprocessing module, and thus inherits its caveats: higher synchronization overhead, and the requirement
for the task and its arguments to be picklable (which also implies that the task must be reachable from the global
namespace, i.e., an anonymous lambda simply won’t work).

Images Resource(s)

In the ASGI flavor of Falcon, all responder methods, hooks and middleware methods must be awaitable coroutines.
Let’s see how this works by implementing a resource to represent both a single image and a collection of images.
Place the code below in a file named images.py:

import aiofiles
import falcon

class Images:

def __init__(self, config, store):
self._config = config
self._store = store

(continues on next page)

50 Chapter 5. Documentation

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ProcessPoolExecutor
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ProcessPoolExecutor
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing

Falcon Documentation, Release 3.0.1

(continued from previous page)

async def on_get(self, req, resp):
resp.media = [image.serialize() for image in self._store.list_images()]

async def on_get_image(self, req, resp, image_id):
NOTE: image_id: UUID is converted back to a string identifier.
image = self._store.get(str(image_id))
resp.stream = await aiofiles.open(image.path, 'rb')
resp.content_type = falcon.MEDIA_JPEG

async def on_post(self, req, resp):
data = await req.stream.read()
image_id = str(self._config.uuid_generator())
image = await self._store.save(image_id, data)

resp.location = image.uri
resp.media = image.serialize()
resp.status = falcon.HTTP_201

This module is an example of a Falcon “resource” class, as described in Routing. Falcon uses resource-based routing
to encourage a RESTful architectural style. For each HTTP method that a resource supports, the target resource class
simply implements a corresponding Python method with a name that starts with on_ and ends in the lowercased HTTP
method name (e.g., on_get(), on_patch(), on_delete(), etc.)

Note: If a Python method is omitted for a given HTTP verb, the framework will automatically respond with 405
Method Not Allowed. Falcon also provides a default responder for OPTIONS requests that takes into account
which methods are implemented for the target resource.

Here we opted to implement support for both a single image (which supports GET for downloading the image) and a
collection of images (which supports GET for listing the collection, and POST for uploading a new image) in the same
Falcon resource class. In order to make this work, the Falcon router needs a way to determine which methods to call
for the collection vs. the item. This is done by using a suffixed route, as described in add_route() (see also: How
do I implement both POSTing and GETing items for the same resource?).

Alternatively, we could have split the implementation to strictly represent one RESTful resource per class. In that case,
there would have been no need to use suffixed responders. Depending on the application, using two classes instead of
one may lead to a cleaner design. (See also: What is the recommended way to map related routes to resource classes?)

Note: In this example, we serve the image by simply assigning an open aiofiles file to resp.stream. This
works because Falcon includes special handling for streaming async file-like objects.

Warning: In production deployment, serving files directly from the web server, rather than through the Falcon
ASGI app, will likely be more efficient, and therefore should be preferred. See also: Can Falcon serve static files?

Also worth noting is that the on_get_image() responder will be receiving an image_id of type UUID. So what’s
going on here? How will the image_id field, matched from a string path segment, become a UUID?

Falcon’s default router supports simple validation and transformation using field converters. In this example, we’ll
use the UUIDConverter to validate the image_id input as UUID. Converters are specified for a route by
including their shorthand identifiers in the URI template for the route; for instance, the route corresponding to
on_get_image() will use the following template (see also the next chapter, as well as Routing):

5.1. User Guide 51

https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/uuid.html#uuid.UUID

Falcon Documentation, Release 3.0.1

/images/{image_id:uuid}.jpeg

Since our application is still internally centered on string identifiers, feel free to experiment with refactoring the image
Store to use UUIDs natively!

(Alternatively, one could implement a custom field converter to use uuid only for validation, but return an unmodified
string.)

Note: In contrast to asynchronous building blocks (responders, middleware, hooks etc.) of a Falcon ASGI application,
field converters are simple synchronous data transformation functions that are not expected to perform any I/O.

Running Our Application

Now we’re ready to configure the routes for our app to map image paths in the request URL to an instance of our
resource class.

Let’s also refactor our app.py module to let us invoke create_app() wherever we need it. This will become
useful later on when we start writing test cases.

Modify app.py to read as follows:

import falcon.asgi

from .config import Config
from .images import Images
from .store import Store

def create_app(config=None):
config = config or Config()
store = Store(config)
images = Images(config, store)

app = falcon.asgi.App()
app.add_route('/images', images)
app.add_route('/images/{image_id:uuid}.jpeg', images, suffix='image')

return app

As mentioned earlier, we need to use a route suffix for the Images class to distinguish between a GET for a single
image vs. the entire collection of images.

Here, we map the '/images/{image_id:uuid}.jpeg' URI template to a single image resource. By specify-
ing an 'image' suffix, we cause the framework to look for responder methods that have names ending in '_image'
(e.g, on_get_image()).

We also specify the uuid field converter as discussed in the previous section.

In order to bootstrap an ASGI app instance for uvicorn to reference, we’ll create a simple asgi.py module with
the following contents:

from .app import create_app

app = create_app()

Running the application is not too dissimilar from the previous command line:

52 Chapter 5. Documentation

https://docs.python.org/3/library/uuid.html#uuid.UUID

Falcon Documentation, Release 3.0.1

$ uvicorn asgilook.asgi:app

Provided uvicorn is started as per the above command line, let’s try uploading some images in a separate terminal:

$ http POST localhost:8000/images @/home/user/Pictures/test.png

HTTP/1.1 201 Created
content-length: 173
content-type: application/json
date: Tue, 24 Dec 2019 17:32:18 GMT
location: /images/5cfd9fb6-259a-4c72-b8b0-5f4c35edcd3c.jpeg
server: uvicorn

{
"id": "5cfd9fb6-259a-4c72-b8b0-5f4c35edcd3c",
"image": "/images/5cfd9fb6-259a-4c72-b8b0-5f4c35edcd3c.jpeg",
"modified": "Tue, 24 Dec 2019 17:32:19 GMT",
"size": [

462,
462

]
}

Next, try retrieving the uploaded image:

$ http localhost:8000/images/5cfd9fb6-259a-4c72-b8b0-5f4c35edcd3c.jpeg

HTTP/1.1 200 OK
content-type: image/jpeg
date: Tue, 24 Dec 2019 17:34:53 GMT
server: uvicorn
transfer-encoding: chunked

+---+
| NOTE: binary data not shown in terminal |
+---+

We could also open the link in a web browser or pipe it to an image viewer to verify that the image was successfully
converted to a JPEG.

Let’s check the image collection now:

$ http localhost:8000/images

HTTP/1.1 200 OK
content-length: 175
content-type: application/json
date: Tue, 24 Dec 2019 17:36:31 GMT
server: uvicorn

[
{

"id": "5cfd9fb6-259a-4c72-b8b0-5f4c35edcd3c",
"image": "/images/5cfd9fb6-259a-4c72-b8b0-5f4c35edcd3c.jpeg",
"modified": "Tue, 24 Dec 2019 17:32:19 GMT",
"size": [

462,
462

(continues on next page)

5.1. User Guide 53

Falcon Documentation, Release 3.0.1

(continued from previous page)

]
}

]

The application file layout should now look like this:

asgilook
.venv
asgilook

__init__.py
app.py
asgi.py
config.py
images.py
store.py

Dynamic Thumbnails

Let’s pretend our image service customers want to render images in multiple resolutions, for instance, as srcset for
responsive HTML images or other purposes.

Let’s add a new method Store.make_thumbnail() to perform scaling on the fly:

async def make_thumbnail(self, image, size):
async with aiofiles.open(image.path, 'rb') as img_file:

data = await img_file.read()

loop = asyncio.get_running_loop()
return await loop.run_in_executor(None, self._resize, data, size)

We’ll also add an internal helper to run the Pillow thumbnail operation that is offloaded to a threadpool executor,
again, in hoping that Pillow can release the GIL for some operations:

def _resize(self, data, size):
image = PIL.Image.open(io.BytesIO(data))
image.thumbnail(size)

resized = io.BytesIO()
image.save(resized, 'JPEG')
return resized.getvalue()

The store.Image class can be extended to also return URIs to thumbnails:

def thumbnails(self):
def reductions(size, min_size):

width, height = size
factor = 2
while width // factor >= min_size and height // factor >= min_size:

yield (width // factor, height // factor)
factor *= 2

return [
f'/thumbnails/{self.image_id}/{width}x{height}.jpeg'
for width, height in reductions(

self.size, self._config.min_thumb_size)]

54 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

Here, we only generate URIs for a series of downsized resolutions. The actual scaling will happen on the fly upon
requesting these resources.

Each thumbnail in the series is approximately half the size (one quarter area-wise) of the previous one, similar to how
mipmapping works in computer graphics. You may wish to experiment with this resolution distribution.

Furthermore, it is practical to impose a minimum resolution, as any potential benefit from switching between very
small thumbnails (a few kilobytes each) is likely to be overshadowed by the request overhead. As you may have
noticed in the above snippet, we are referencing this lower size limit as self._config.min_thumb_size. The
app configuration will need to be updated to add the min_thumb_size option (by default initialized to 64 pixels)
as follows:

import os
import pathlib
import uuid

class Config:
DEFAULT_CONFIG_PATH = '/tmp/asgilook'
DEFAULT_MIN_THUMB_SIZE = 64
DEFAULT_UUID_GENERATOR = uuid.uuid4

def __init__(self):
self.storage_path = pathlib.Path(

os.environ.get('ASGI_LOOK_STORAGE_PATH', self.DEFAULT_CONFIG_PATH))
self.storage_path.mkdir(parents=True, exist_ok=True)

self.uuid_generator = Config.DEFAULT_UUID_GENERATOR
self.min_thumb_size = self.DEFAULT_MIN_THUMB_SIZE

After updating store.py, the module should now look like this:

import asyncio
import datetime
import io

import aiofiles
import falcon
import PIL.Image

class Image:

def __init__(self, config, image_id, size):
self._config = config

self.image_id = image_id
self.size = size
self.modified = datetime.datetime.utcnow()

@property
def path(self):

return self._config.storage_path / self.image_id

@property
def uri(self):

return f'/images/{self.image_id}.jpeg'

(continues on next page)

5.1. User Guide 55

https://en.wikipedia.org/wiki/Mipmap

Falcon Documentation, Release 3.0.1

(continued from previous page)

def serialize(self):
return {

'id': self.image_id,
'image': self.uri,
'modified': falcon.dt_to_http(self.modified),
'size': self.size,
'thumbnails': self.thumbnails(),

}

def thumbnails(self):
def reductions(size, min_size):

width, height = size
factor = 2
while width // factor >= min_size and height // factor >= min_size:

yield (width // factor, height // factor)
factor *= 2

return [
f'/thumbnails/{self.image_id}/{width}x{height}.jpeg'
for width, height in reductions(

self.size, self._config.min_thumb_size)]

class Store:

def __init__(self, config):
self._config = config
self._images = {}

def _load_from_bytes(self, data):
return PIL.Image.open(io.BytesIO(data))

def _convert(self, image):
rgb_image = image.convert('RGB')

converted = io.BytesIO()
rgb_image.save(converted, 'JPEG')
return converted.getvalue()

def _resize(self, data, size):
image = PIL.Image.open(io.BytesIO(data))
image.thumbnail(size)

resized = io.BytesIO()
image.save(resized, 'JPEG')
return resized.getvalue()

def get(self, image_id):
return self._images.get(image_id)

def list_images(self):
return sorted(self._images.values(), key=lambda item: item.modified)

async def make_thumbnail(self, image, size):
async with aiofiles.open(image.path, 'rb') as img_file:

data = await img_file.read()

(continues on next page)

56 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

(continued from previous page)

loop = asyncio.get_running_loop()
return await loop.run_in_executor(None, self._resize, data, size)

async def save(self, image_id, data):
loop = asyncio.get_running_loop()
image = await loop.run_in_executor(None, self._load_from_bytes, data)
converted = await loop.run_in_executor(None, self._convert, image)

path = self._config.storage_path / image_id
async with aiofiles.open(path, 'wb') as output:

await output.write(converted)

stored = Image(self._config, image_id, image.size)
self._images[image_id] = stored
return stored

Let’s also add a Thumbnails resource to expose the new functionality. The final version of images.py reads:

import aiofiles
import falcon

class Images:

def __init__(self, config, store):
self._config = config
self._store = store

async def on_get(self, req, resp):
resp.media = [image.serialize() for image in self._store.list_images()]

async def on_get_image(self, req, resp, image_id):
NOTE: image_id: UUID is converted back to a string identifier.
image = self._store.get(str(image_id))
if not image:

raise falcon.HTTPNotFound

resp.stream = await aiofiles.open(image.path, 'rb')
resp.content_type = falcon.MEDIA_JPEG

async def on_post(self, req, resp):
data = await req.stream.read()
image_id = str(self._config.uuid_generator())
image = await self._store.save(image_id, data)

resp.location = image.uri
resp.media = image.serialize()
resp.status = falcon.HTTP_201

class Thumbnails:

def __init__(self, store):
self._store = store

async def on_get(self, req, resp, image_id, width, height):
image = self._store.get(str(image_id))

(continues on next page)

5.1. User Guide 57

Falcon Documentation, Release 3.0.1

(continued from previous page)

if not image:
raise falcon.HTTPNotFound

if req.path not in image.thumbnails():
raise falcon.HTTPNotFound

resp.content_type = falcon.MEDIA_JPEG
resp.data = await self._store.make_thumbnail(image, (width, height))

Note: Even though we are only building a sample application, it is a good idea to cultivate a habit of making your
code secure by design and secure by default.

In this case, we see that generating thumbnails on the fly, based on arbitrary dimensions embedded in the URI, could
easily be abused to create a denial-of-service attack.

This particular attack is mitigated by validating the input (in this case, the requested path) against a list of allowed
values.

Finally, a new thumbnail route needs to be added in app.py. This step is left as an exercise for the reader.

Tip: Draw inspiration from the thumbnail URI formatting string:

f'/thumbnails/{self.image_id}/{width}x{height}.jpeg'

The actual URI template for the thumbnails route should look quite similar to the above.

Remember that we want to use the uuid converter for the image_id field, and image dimensions (width and
height) should ideally be converted to ints.

(If you get stuck, see the final version of app.py later in this tutorial.)

Note: If you try to request a non-existent resource (e.g., due to a missing route , or simply a typo in the
URI), the framework will automatically render an HTTP 404 Not Found response by raising an instance of
HTTPNotFound (unless that exception is intercepted by a custom error handler, or if the path matches a
sink prefix).

Conversely, if a route is matched to a resource, but there is no responder for the HTTP method in question, Falcon will
render HTTP 405 Method Not Allowed via HTTPMethodNotAllowed.

The new thumbnails end-point should now render thumbnails on the fly:

$ http POST localhost:8000/images @/home/user/Pictures/test.png

HTTP/1.1 201 Created
content-length: 319
content-type: application/json
date: Tue, 24 Dec 2019 18:58:20 GMT
location: /images/f2375273-8049-4b10-b17e-8851db9ac7af.jpeg
server: uvicorn

{
"id": "f2375273-8049-4b10-b17e-8851db9ac7af",
"image": "/images/f2375273-8049-4b10-b17e-8851db9ac7af.jpeg",

(continues on next page)

58 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

(continued from previous page)

"modified": "Tue, 24 Dec 2019 18:58:21 GMT",
"size": [

462,
462

],
"thumbnails": [

"/thumbnails/f2375273-8049-4b10-b17e-8851db9ac7af/231x231.jpeg",
"/thumbnails/f2375273-8049-4b10-b17e-8851db9ac7af/115x115.jpeg"

]
}

$ http localhost:8000/thumbnails/f2375273-8049-4b10-b17e-8851db9ac7af/115x115.jpeg

HTTP/1.1 200 OK
content-length: 2985
content-type: image/jpeg
date: Tue, 24 Dec 2019 19:00:14 GMT
server: uvicorn

+---+
| NOTE: binary data not shown in terminal |
+---+

Again, we could also verify thumbnail URIs in the browser or image viewer that supports HTTP input.

Caching Responses

Although scaling thumbnails on-the-fly sounds cool, and we also avoid many pesky small files littering our storage, it
consumes CPU resources, and we would soon find our application crumbling under load.

Let’s mitigate this problem with response caching. We’ll use Redis, taking advantage of aioredis for async support:

pip install aioredis

We will also need to serialize response data (the Content-Type header and the body in the first version); msgpack
should do:

pip install msgpack

Our application will obviously need access to a Redis server. Apart from just installing Redis server on your machine,
one could also:

• Spin up Redis in Docker, eg:

docker run -p 6379:6379 redis

• Assuming Redis is installed on the machine, one could also try pifpaf for spinning up Redis just temporarily for
uvicorn:

pifpaf run redis -- uvicorn asgilook.asgi:app

We will perform caching with a Falcon Middleware component. Again, note that all middleware callbacks must
be asynchronous. Even initializing the Redis connection with aioredis.create_redis_pool() must be
awaited. But how can we await coroutines from within our synchronous create_app() function?

5.1. User Guide 59

https://github.com/aio-libs/aioredis
https://github.com/jd/pifpaf

Falcon Documentation, Release 3.0.1

ASGI application lifespan events come to the rescue. An ASGI application server emits these events upon application
startup and shutdown.

Let’s implement the process_startup() handler in our middleware to execute code upon our application startup:

async def process_startup(self, scope, event):
self.redis = await self._config.create_redis_pool(

self._config.redis_host)

Warning: The Lifespan Protocol is an optional extension; please check if your ASGI server of choice implements
it.

uvicorn (that we picked for this tutorial) supports Lifespan.

At minimum, our middleware will need to know the Redis host(s) to use. Let’s also make our Redis connection factory
configurable to afford injecting different Redis client implementations for production and testing.

Note: Rather than requiring the caller to pass the host to the connection factory, a wrapper method could be used
to implicitly reference self.redis_host. Such a design might prove helpful for apps that need to create client
connections in more than one place.

Assuming we call our new configuration items redis_host and create_redis_pool(), respectively, the final
version of config.py now reads:

import os
import pathlib
import uuid

import aioredis

class Config:
DEFAULT_CONFIG_PATH = '/tmp/asgilook'
DEFAULT_MIN_THUMB_SIZE = 64
DEFAULT_REDIS_HOST = 'redis://localhost'
DEFAULT_REDIS_POOL = aioredis.create_redis_pool
DEFAULT_UUID_GENERATOR = uuid.uuid4

def __init__(self):
self.storage_path = pathlib.Path(

os.environ.get('ASGI_LOOK_STORAGE_PATH', self.DEFAULT_CONFIG_PATH))
self.storage_path.mkdir(parents=True, exist_ok=True)

self.create_redis_pool = Config.DEFAULT_REDIS_POOL
self.min_thumb_size = self.DEFAULT_MIN_THUMB_SIZE
self.redis_host = self.DEFAULT_REDIS_HOST
self.uuid_generator = Config.DEFAULT_UUID_GENERATOR

Let’s complete the Redis cache component by implementing two more middleware methods, in addition to
process_startup(). Create a cache.py module containing the following code.

import msgpack

(continues on next page)

60 Chapter 5. Documentation

https://asgi.readthedocs.io/en/latest/specs/lifespan.html

Falcon Documentation, Release 3.0.1

(continued from previous page)

class RedisCache:
PREFIX = 'asgilook:'
INVALIDATE_ON = frozenset({'DELETE', 'POST', 'PUT'})
CACHE_HEADER = 'X-ASGILook-Cache'
TTL = 3600

def __init__(self, config):
self._config = config

NOTE(vytas): To be initialized upon application startup (see the
method below).
self._redis = None

async def _serialize_response(self, resp):
data = await resp.render_body()
return msgpack.packb([resp.content_type, data], use_bin_type=True)

def _deserialize_response(self, resp, data):
resp.content_type, resp.data = msgpack.unpackb(data, raw=False)
resp.complete = True
resp.context.cached = True

async def process_startup(self, scope, event):
if self._redis is None:

self._redis = await self._config.create_redis_pool(
self._config.redis_host)

async def process_request(self, req, resp):
resp.context.cached = False

if req.method in self.INVALIDATE_ON:
return

key = f'{self.PREFIX}/{req.path}'
data = await self._redis.get(key)
if data is not None:

self._deserialize_response(resp, data)
resp.set_header(self.CACHE_HEADER, 'Hit')

else:
resp.set_header(self.CACHE_HEADER, 'Miss')

async def process_response(self, req, resp, resource, req_succeeded):
if not req_succeeded:

return

key = f'{self.PREFIX}/{req.path}'

if req.method in self.INVALIDATE_ON:
await self._redis.delete(key)

elif not resp.context.cached:
data = await self._serialize_response(resp)
await self._redis.set(key, data, expire=self.TTL)

For caching to take effect, we also need to modify app.py to add the RedisCache component to our application’s
middleware list. The final version of app.py should look something like this:

5.1. User Guide 61

Falcon Documentation, Release 3.0.1

import falcon.asgi

from .cache import RedisCache
from .config import Config
from .images import Images, Thumbnails
from .store import Store

def create_app(config=None):
config = config or Config()
cache = RedisCache(config)
store = Store(config)
images = Images(config, store)
thumbnails = Thumbnails(store)

app = falcon.asgi.App(middleware=[cache])
app.add_route('/images', images)
app.add_route('/images/{image_id:uuid}.jpeg', images, suffix='image')
app.add_route('/thumbnails/{image_id:uuid}/{width:int}x{height:int}.jpeg',

thumbnails)

return app

Now, subsequent access to /thumbnails should be cached, as indicated by the x-asgilook-cache header:

$ http localhost:8000/thumbnails/167308e4-e444-4ad9-88b2-c8751a4e37d4/115x115.jpeg

HTTP/1.1 200 OK
content-length: 2985
content-type: image/jpeg
date: Tue, 24 Dec 2019 19:46:51 GMT
server: uvicorn
x-asgilook-cache: Hit

+---+
| NOTE: binary data not shown in terminal |
+---+

Note: Left as another exercise for the reader: individual images are streamed directly from aiofiles instances,
and caching therefore does not work for them at the moment.

The project’s structure should now look like this:

asgilook
.venv
asgilook

__init__.py
app.py
asgi.py
cache.py
config.py
images.py
store.py

62 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

Testing Our Application

So far, so good? We have only tested our application by sending a handful of requests manually. Have we tested all
code paths? Have we covered typical user inputs to the application?

Creating a comprehensive test suite is vital not only for verifying that the application is behaving correctly at the
moment, but also for limiting the impact of any regressions introduced into the codebase over time.

In order to implement a test suite, we’ll need to revise our dependencies and decide which abstraction level we are
after:

• Will we run a real Redis server?

• Will we store “real” files on a filesystem or just provide a fixture for aiofiles?

• Will we inject real dependencies, or use mocks and monkey patching?

There is no right and wrong here, as different testing strategies (or a combination thereof) have their own advantages
in terms of test running time, how easy it is to implement new tests, how similar the test environment is to production,
etc.

Another thing to choose is a testing framework. Just as in the WSGI tutorial, let’s use pytest. This is a matter of taste;
if you prefer xUnit/JUnit-style layout, you’ll feel at home with the stdlib’s unittest.

In order to more quickly deliver a working solution, we’ll allow our tests to access the real filesystem. For our
convenience, pytest offers several temporary directory utilities out of the box. Let’s wrap its tmpdir_factory
to create a simple storage_path fixture that we’ll share among all tests in the suite (in the pytest parlance, a
“session”-scoped fixture).

Tip: The pytest website includes in-depth documentation on the use of fixtures. Please visit pytest fixtures:
explicit, modular, scalable to learn more.

As mentioned in the previous section, there are many ways to spin up a temporary or permanent Redis server; or mock
it altogether. For our tests, we’ll try fakeredis, a pure Python implementation tailored specifically for writing unit tests.

pytest and fakeredis can be installed as:

$ pip install fakeredis pytest

We’ll also create a directory for our tests and make it a Python package to avoid any problems with importing local
utility modules or checking code coverage:

$ mkdir -p tests
$ touch tests/__init__.py

Next, let’s implement fixtures to replace uuid and aioredis, and inject them into our tests via conftest.py
(place your code in the newly created tests directory):

import io
import random
import uuid

import fakeredis.aioredis
import falcon.asgi
import falcon.testing
import PIL.Image
import PIL.ImageDraw
import pytest

(continues on next page)

5.1. User Guide 63

http://docs.pytest.org/en/latest/
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.pytest.org/en/stable/fixture.html
https://docs.pytest.org/en/stable/fixture.html
https://pypi.org/project/fakeredis/

Falcon Documentation, Release 3.0.1

(continued from previous page)

from asgilook.app import create_app
from asgilook.config import Config

@pytest.fixture()
def predictable_uuid():

fixtures = (
uuid.UUID('36562622-48e5-4a61-be67-e426b11821ed'),
uuid.UUID('3bc731ac-8cd8-4f39-b6fe-1a195d3b4e74'),
uuid.UUID('ba1c4951-73bc-45a4-a1f6-aa2b958dafa4'),

)

def uuid_func():
try:

return next(fixtures_it)
except StopIteration:

return uuid.uuid4()

fixtures_it = iter(fixtures)
return uuid_func

@pytest.fixture(scope='session')
def storage_path(tmpdir_factory):

return tmpdir_factory.mktemp('asgilook')

@pytest.fixture
def client(predictable_uuid, storage_path):

config = Config()
config.create_redis_pool = fakeredis.aioredis.create_redis_pool
config.redis_host = None
config.storage_path = storage_path
config.uuid_generator = predictable_uuid

app = create_app(config)
return falcon.testing.TestClient(app)

@pytest.fixture(scope='session')
def png_image():

image = PIL.Image.new('RGBA', (640, 360), color='black')

draw = PIL.ImageDraw.Draw(image)
for _ in range(32):

x0 = random.randint(20, 620)
y0 = random.randint(20, 340)
x1 = random.randint(20, 620)
y1 = random.randint(20, 340)
if x0 > x1:

x0, x1 = x1, x0
if y0 > y1:

y0, y1 = y1, y0
draw.ellipse([(x0, y0), (x1, y1)], fill='yellow', outline='red')

output = io.BytesIO()
(continues on next page)

64 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

(continued from previous page)

image.save(output, 'PNG')
return output.getvalue()

@pytest.fixture(scope='session')
def image_size():

def report_size(data):
image = PIL.Image.open(io.BytesIO(data))
return image.size

return report_size

Note: In the png_image fixture above, we are drawing random images that will look different every time the tests
are run.

If your testing flow affords that, it is often a great idea to introduce some unpredictability in your test inputs. This
will provide more confidence that your application can handle a broader range of inputs than just 2-3 test cases crafted
specifically for that sole purpose.

On the other hand, random inputs can make assertions less stringent and harder to formulate, so judge according to
what is the most important for your application. You can also try to combine the best of both worlds by using a healthy
mix of rigid fixtures and fuzz testing.

Note: More information on conftest.py's anatomy and pytest configuration can be found in the latter’s
documentation: conftest.py: local per-directory plugins.

With the groundwork in place, we can start with a simple test that will attempt to GET the /images resource. Place
the following code in a new tests/test_images.py module:

def test_list_images(client):
resp = client.simulate_get('/images')

assert resp.status_code == 200
assert resp.json == []

Let’s give it a try:

$ pytest tests/test_images.py

========================= test session starts ==========================
platform linux -- Python 3.8.0, pytest-6.2.1, py-1.10.0, pluggy-0.13.1
rootdir: /falcon/tutorials/asgilook
collected 1 item

tests/test_images.py . [100%]

========================== 1 passed in 0.01s ===========================

Success!

At this point, our project structure, containing the asgilook and test packages, should look like this:

5.1. User Guide 65

https://docs.pytest.org/en/stable/writing_plugins.html#localplugin

Falcon Documentation, Release 3.0.1

asgilook
.venv
asgilook

__init__.py
app.py
asgi.py
cache.py
config.py
images.py
store.py

tests
__init__.py
conftest.py
test_images.py

Now, we need more tests! Try adding a few more test cases to tests/test_images.py, using the WSGI Testing
Tutorial as your guide (the interface for Falcon’s testing framework is mostly the same for ASGI vs. WSGI). Additional
examples are available under examples/asgilook/tests in the Falcon repository.

Tip: For more advanced test cases, the falcon.testing.ASGIConductor class is worth a look.

Code Coverage

How much of our asgilook code is covered by these tests?

An easy way to get a coverage report is by using the pytest-cov plugin (available on PyPi).

After installing pytest-cov we can generate a coverage report as follows:

$ pytest --cov=asgilook --cov-report=term-missing tests/

Oh, wow! We do happen to have full line coverage, except for asgilook/asgi.py. If desired, we can instruct
coverage to omit this module by listing it in the omit section of a .coveragerc file.

What is more, we could turn the current coverage into a requirement by adding --cov-fail-under=100 (or any
other percent threshold) to our pytest command.

Note: The pytest-cov plugin is quite simplistic; more advanced testing strategies such as blending different types
of tests and/or running the same tests in multiple environments would most probably involve running coverage
directly, and combining results.

What Now?

Congratulations, you have successfully completed the Falcon ASGI tutorial!

Needless to say, our sample ASGI application could still be improved in numerous ways:

• Make the image store persistent and reusable across worker processes. Maybe by using a database?

• Improve error handling for malformed images.

• Check how and when Pillow releases the GIL, and tune what is offloaded to a threadpool executor.

• Test Pillow-SIMD to boost performance.

66 Chapter 5. Documentation

https://pypi.org/project/Pillow-SIMD/

Falcon Documentation, Release 3.0.1

• Publish image upload events via SSE or WebSockets.

• . . . And much more (patches welcome, as they say)!

Compared to the sync version, asynchronous code can at times be harder to design and reason about. Should you run
into any issues, our friendly community is available to answer your questions and help you work through any sticky
problems (see also: Getting Help).

5.1.6 Recipes

Capitalizing Response Header Names

Falcon always renders WSGI response header names in lower case; see also: Why is Falcon changing my header
names to lowercase?

While this should normally never be an issue for standards-conformant HTTP clients, it is possible to override HTTP
headers using generic WSGI middleware:

class CustomHeadersMiddleware:

def __init__(self, app, title_case=True, custom_capitalization=None):
self._app = app
self._title_case = title_case
self._capitalization = custom_capitalization or {}

def __call__(self, environ, start_response):
def start_response_wrapper(status, response_headers, exc_info=None):

if self._title_case:
headers = [

(self._capitalization.get(name, name.title()), value)
for name, value in response_headers]

else:
headers = [

(self._capitalization.get(name, name), value)
for name, value in response_headers]

start_response(status, headers, exc_info)

return self._app(environ, start_response_wrapper)

We can now use this middleware to wrap a Falcon app:

import falcon

Import or define CustomHeadersMiddleware from the above snippet...

class FunkyResource:

def on_get(self, req, resp):
resp.set_header('X-Funky-Header', 'test')
resp.media = {'message': 'Hello'}

app = falcon.App()
app.add_route('/test', FunkyResource())

app = CustomHeadersMiddleware(

(continues on next page)

5.1. User Guide 67

https://www.python.org/dev/peps/pep-3333/#middleware-components-that-play-both-sides

Falcon Documentation, Release 3.0.1

(continued from previous page)

app,
custom_capitalization={'x-funky-header': 'X-FuNkY-HeADeR'},

)

As a bonus, this recipe applies to non-Falcon WSGI applications too.

Parsing Nested Multipart Forms

Out of the box, Falcon does not offer official support for parsing nested multipart forms (i.e., where multiple files for
a single field are transmitted using a nested multipart/mixed part).

Note: Nested multipart forms are considered deprecated according to the living HTML5 standard and RFC 7578,
Section 4.3.

If your app needs to handle nested forms, this can be done in the same fashion as any other part embedded in the form
– by installing an appropriate media handler.

Let us extend the multipart form parser media handlers to recursively parse embedded forms of the
multipart/mixed content type:

import falcon
import falcon.media

parser = falcon.media.MultipartFormHandler()
parser.parse_options.media_handlers['multipart/mixed'] = (

falcon.media.MultipartFormHandler())

Note: Here we create a new parser (with default options) for nested parts, effectively disallowing further recursion.

If traversing into even deeper multipart form hierarchy is desired, we can just reuse the same parser.

Let us now use the nesting-aware parser in an app:

import falcon
import falcon.media

class Forms:
def on_post(self, req, resp):

example = {}
for part in req.media:

if part.content_type.startswith('multipart/mixed'):
for nested in part.media:

example[nested.filename] = nested.text

resp.media = example

parser = falcon.media.MultipartFormHandler()
parser.parse_options.media_handlers['multipart/mixed'] = (

falcon.media.MultipartFormHandler())

app = falcon.App()
(continues on next page)

68 Chapter 5. Documentation

https://html.spec.whatwg.org/multipage/form-control-infrastructure.html
https://tools.ietf.org/html/rfc7578#section-4.3
https://tools.ietf.org/html/rfc7578#section-4.3

Falcon Documentation, Release 3.0.1

(continued from previous page)

app.req_options.media_handlers[falcon.MEDIA_MULTIPART] = parser
app.add_route('/forms', Forms())

We should now be able to consume a form containing a nested multipart/mixed part (the example is adapted
from the now-obsolete RFC 1867):

--AaB03x
Content-Disposition: form-data; name="field1"

Joe Blow
--AaB03x
Content-Disposition: form-data; name="docs"
Content-Type: multipart/mixed; boundary=BbC04y

--BbC04y
Content-Disposition: attachment; filename="file1.txt"

This is file1.

--BbC04y
Content-Disposition: attachment; filename="file2.txt"

Hello, World!

--BbC04y--

--AaB03x--

Note that all line endings in the form above are assumed to be CRLF.

The form should be POSTed with the Content-Type header set to multipart/form-data;
boundary=AaB03x.

Outputting CSV Files

Generating a CSV (or PDF, etc.) report and making it available as a downloadable file is a fairly common back-end
service task.

The easiest approach is to simply write CSV rows to an io.StringIO stream, and then assign its value to resp.
text:

WSGI

ASGI

class Report:

def on_get(self, req, resp):
output = io.StringIO()
writer = csv.writer(output, quoting=csv.QUOTE_NONNUMERIC)
writer.writerow(('fruit', 'quantity'))
writer.writerow(('apples', 13))
writer.writerow(('oranges', 37))

resp.content_type = 'text/csv'
resp.downloadable_as = 'report.csv'
resp.text = output.getvalue()

5.1. User Guide 69

https://tools.ietf.org/html/rfc1867

Falcon Documentation, Release 3.0.1

class Report:

async def on_get(self, req, resp):
output = io.StringIO()
writer = csv.writer(output, quoting=csv.QUOTE_NONNUMERIC)
writer.writerow(('fruit', 'quantity'))
writer.writerow(('apples', 13))
writer.writerow(('oranges', 37))

resp.content_type = 'text/csv'
resp.downloadable_as = 'report.csv'
resp.text = output.getvalue()

Here we set the response Content-Type to "text/csv" as recommended by RFC 4180, and assign the down-
loadable file name report.csv via the Content-Disposition header (see also: How can I serve a download-
able file with Falcon?).

Streaming Large CSV Files on the Fly

If generated CSV responses are expected to be very large, it might be worth streaming the CSV data as it is produced.
This approach will both avoid excessive memory consumption, and reduce the viewer’s time-to-first-byte (TTFB).

In order to stream CSV rows on the fly, we will initialize the CSV writer with our own pseudo stream object. Our
stream’s write() method will simply accumulate the CSV data in a list. We will then set resp.stream to a
generator yielding data chunks from this list:

WSGI

ASGI

class Report:

class PseudoTextStream:
def __init__(self):

self.clear()

def clear(self):
self.result = []

def write(self, data):
self.result.append(data.encode())

def fibonacci_generator(self, n=1000):
stream = self.PseudoTextStream()
writer = csv.writer(stream, quoting=csv.QUOTE_NONNUMERIC)
writer.writerow(('n', 'Fibonacci Fn'))

previous = 1
current = 0
for i in range(n+1):

writer.writerow((i, current))
previous, current = current, current + previous

yield from stream.result
stream.clear()

(continues on next page)

70 Chapter 5. Documentation

https://tools.ietf.org/html/rfc4180

Falcon Documentation, Release 3.0.1

(continued from previous page)

def on_get(self, req, resp):
resp.content_type = 'text/csv'
resp.downloadable_as = 'report.csv'
resp.stream = self.fibonacci_generator()

class Report:

class PseudoTextStream:
def __init__(self):

self.clear()

def clear(self):
self.result = []

def write(self, data):
self.result.append(data.encode())

async def fibonacci_generator(self, n=1000):
stream = self.PseudoTextStream()
writer = csv.writer(stream, quoting=csv.QUOTE_NONNUMERIC)
writer.writerow(('n', 'Fibonacci Fn'))

previous = 1
current = 0
for i in range(n+1):

writer.writerow((i, current))
previous, current = current, current + previous

for chunk in stream.result:
yield chunk

stream.clear()

async def on_get(self, req, resp):
resp.content_type = 'text/csv'
resp.downloadable_as = 'report.csv'
resp.stream = self.fibonacci_generator()

Note: At the time of writing, Python does not support yield from here in an asynchronous generator, so we
substitute it with a loop expression.

Prettifying JSON Responses

To make JSON responses more human-readable, it may be desirable to prettify the output. By default, Falcon’s
JSONHandler is configured to minimize serialization overhead. However, you can easily customize the output by
simply providing the desired dumps parameters:

import functools
import json

from falcon import media

json_handler = media.JSONHandler(
(continues on next page)

5.1. User Guide 71

Falcon Documentation, Release 3.0.1

(continued from previous page)

dumps=functools.partial(json.dumps, indent=4, sort_keys=True),
)

You can now replace the default application/json response media handlers with this customized
json_handler to make your application’s JSON responses prettier (see also: Replacing the Default Handlers).

Note: Another alternative for debugging is prettifying JSON on the client side, for example, the popular HTTPie does
it by default. Another option is to simply pipe the JSON response into jq.

If your debugging case allows it, the client side approach should be preferred since it neither incurs performance
overhead on the server side nor requires any customization effort.

Supporting optional indentation

Internet media type (content-type) negotiation is the canonical way to express resource representation preferences.
Although not a part of the application/json media type standard, some frameworks (such as the Django REST
Framework) and services support requesting a specific JSON indentation level using the indent content-type param-
eter. This recipe leaves the interpretation to the reader as to whether such a parameter adds “new functionality” as per
RFC 6836, Section 4.3.

Assuming we want to add JSON indent support to a Falcon app, this can be implemented with a custom media
handler:

import cgi
import json

import falcon

class CustomJSONHandler(falcon.media.BaseHandler):
MAX_INDENT_LEVEL = 8

def deserialize(self, stream, content_type, content_length):
data = stream.read()
return json.loads(data.decode())

def serialize(self, media, content_type):
_, params = cgi.parse_header(content_type)
indent = params.get('indent')
if indent is not None:

try:
indent = int(indent)
NOTE: Impose a reasonable indentation level limit.
if indent < 0 or indent > self.MAX_INDENT_LEVEL:

indent = None
except ValueError:

TODO: Handle invalid params?
indent = None

result = json.dumps(media, indent=indent, sort_keys=bool(indent))
return result.encode()

Furthermore, we’ll need to implement content-type negotiation to accept the indented JSON content type for response
serialization. The bare-minimum example uses a middleware component as described here: Content-Type Negotiation.

72 Chapter 5. Documentation

https://httpie.org/
https://stedolan.github.io/jq/
https://tools.ietf.org/html/rfc6838#section-4.3

Falcon Documentation, Release 3.0.1

After installing this handler for application/json response media, as well as adding the negotiation middleware,
we should be able to produce indented JSON output (building upon the frontpage QuoteResource example):

$ curl -H 'Accept: application/json; indent=4' http://localhost:8000/quote
{

"author": "Grace Hopper",
"quote": "I've always been more interested in the future than in the past."

}

Warning: Implementing this in a public API available to untrusted, unauthenticated clients could be viewed as
an unnecessary attack vector.

In the case of a denial-of-service attack, you would be providing the attacker with a convenient way to increase
CPU load by simply asking to indent the output, particularly if large JSON responses are available.

Furthermore, replaying exactly the same requests with and without indentation may reveal information that is
useful for timing attacks, especially if the attacker is able to guess the exact flavor of the JSON module used.

Request ID Logging

When things go wrong, it’s important to be able to identify all relevant log messages for a particular request. This is
commonly done by generating a unique ID for each request and then adding that ID to every log entry.

If you wish to trace each request throughout your application, including from within components that are deeply nested
or otherwise live outside of the normal request context, you can use a thread-local context object to store the request
ID:

context.py

import threading

class _Context:
def __init__(self):

self._thread_local = threading.local()

@property
def request_id(self):

return getattr(self._thread_local, 'request_id', None)

@request_id.setter
def request_id(self, value):

self._thread_local.request_id = value

ctx = _Context()

Then, you can create a middleware class to generate a unique ID for each request, persisting it in the thread local:

middleware.py

from uuid import uuid4
from context import ctx

class RequestIDMiddleware:
def process_request(self, req, resp):

ctx.request_id = str(uuid4())

(continues on next page)

5.1. User Guide 73

https://docs.python.org/3.7/library/threading.html#thread-local-data

Falcon Documentation, Release 3.0.1

(continued from previous page)

It may also be helpful to include the ID in the response
def process_response(self, req, resp, resource, req_succeeded):

resp.set_header('X-Request-ID', ctx.request_id)

Alternatively, if all of your application logic has access to the request, you can simply use the context object to store
the ID:

middleware.py

from uuid import uuid4

Optional logging package (pip install structlog)
import structlog

class RequestIDMiddleware:
def process_request(self, req, resp):

request_id = str(uuid4())

Using Falcon 2.0 syntax
req.context.request_id = request_id

Or if your logger has built-in support for contexts
req.context.log = structlog.get_logger(request_id=request_id)

It may also be helpful to include the ID in the response
def process_response(self, req, resp, resource, req_succeeded):

resp.set_header('X-Request-ID', req.context.request_id)

Note: If your app is deployed behind a reverse proxy that injects a request ID header, you can easily adapt this recipe
to use the upstream ID rather than generating a new one. By doing so, you can provide traceability across the entire
request path.

With this in mind, you may also wish to include this ID in any requests to downstream services.

Once you have access to a request ID, you can include it in your logs by subclassing logging.Formatter and
overriding the format() method, or by using a third-party logging library such as structlog as demonstrated above.

In a pinch, you can also output the request ID directly:

some_other_module.py

import logging

from context import ctx

def create_widget_object(name: str) -> Any:
request_id = 'request_id={0}'.format(ctx.request_id)
logging.debug('%s going to create widget: %s', request_id, name)

try:
create the widget

except:
logging.exception('%s something went wrong', request_id)

(continues on next page)

74 Chapter 5. Documentation

https://docs.python.org/3/library/logging.html#logging.Formatter
https://pypi.org/project/structlog/

Falcon Documentation, Release 3.0.1

(continued from previous page)

logging.debug('%s created widget: %s', request_id, name)

5.1.7 FAQ

• Design Philosophy

– Why doesn’t Falcon come with batteries included?

– Why doesn’t Falcon create a new Resource instance for every request?

– What happens if my responder raises an error?

– How do I generate API documentation for my Falcon API?

• Performance

– Does Falcon work with HTTP/2?

– Is Falcon thread-safe?

– Does Falcon support asyncio?

– Does Falcon support WebSocket?

• Routing

– How do I implement CORS with Falcon?

– How do I implement redirects within Falcon?

– How do I split requests between my original app and the part I migrated to Falcon?

– How do I implement both POSTing and GETing items for the same resource?

– What is the recommended way to map related routes to resource classes?

• Extensibility

– How do I use WSGI middleware with Falcon?

– How can I pass data from a hook to a responder, and between hooks?

– How can I write a custom handler for 404 and 500 pages in falcon?

• Request Handling

– How do I authenticate requests?

– Why does req.stream.read() hang for certain requests?

– How does Falcon handle a trailing slash in the request path?

– Why is my query parameter missing from the req object?

– Why are ‘+’ characters in my params being converted to spaces?

– How can I access POSTed form params?

– How can I access POSTed files?

– How can I save POSTed files (from a multipart form) directly to AWS S3?

– How do I parse a nested multipart form?

5.1. User Guide 75

Falcon Documentation, Release 3.0.1

– How do I retrieve a JSON value from the query string?

– How can I handle forward slashes within a route template field?

– How do I adapt my code to default context type changes in Falcon 2.0?

• Response Handling

– When would I use media, data, and stream?

– How can I use resp.media with types like datetime?

– Does Falcon set Content-Length or do I need to do that explicitly?

– Why is an empty response body returned when I raise an instance of HTTPError?

– I’m setting a response body, but it isn’t getting returned. What’s going on?

– I’m setting a cookie, but it isn’t being returned in subsequent requests.

– How can I serve a downloadable file with Falcon?

– Why is Falcon changing my header names to lowercase?

– Can Falcon serve static files?

• Misc.

– How do I manage my database connections?

– What is the recommended approach for app configuration?

– How do I test my Falcon app? Can I use pytest?

– How can I set cookies when simulating requests?

Design Philosophy

Why doesn’t Falcon come with batteries included?

Falcon is designed for applications that require a high level of customization or performance tuning. The framework’s
minimalist design frees the developer to select the best strategies and 3rd-party packages for the task at hand.

The Python ecosystem offers a number of great packages that you can use from within your responders, hooks, and
middleware components. As a starting point, the community maintains a list of Falcon add-ons and complementary
packages.

Why doesn’t Falcon create a new Resource instance for every request?

Falcon generally tries to minimize the number of objects that it instantiates. It does this for two reasons: first, to
avoid the expense of creating the object, and second to reduce memory usage by reducing the total number of objects
required under highly concurrent workloads. Therefore, when adding a route, Falcon requires an instance of your
resource class, rather than the class type. That same instance will be used to serve all requests coming in on that route.

76 Chapter 5. Documentation

https://github.com/falconry/falcon/wiki
https://github.com/falconry/falcon/wiki

Falcon Documentation, Release 3.0.1

What happens if my responder raises an error?

Generally speaking, Falcon assumes that resource responders (such as on_get(), on_post(), etc.) will, for the
most part, do the right thing. In other words, Falcon doesn’t try very hard to protect responder code from itself.

Note: As of version 3.0, the framework will no longer propagate uncaught exceptions to the application server.
Instead, the default Exception handler will return an HTTP 500 response and log details of the exception to wsgi.
errors.

Although providing basic error handlers, Falcon optimizes for the most common case where resource responders do
not raise any errors for valid requests. With that in mind, writing a high-quality API based on Falcon requires that:

1. Resource responders set response variables to sane values.

2. Your code is well-tested, with high code coverage.

3. Errors are anticipated, detected, and handled appropriately within each responder and with the aid of custom
error handlers.

How do I generate API documentation for my Falcon API?

When it comes to API documentation, some developers prefer to use the API implementation as the user contract or
source of truth (taking an implementation-first approach), while other developers prefer to use the API spec itself as
the contract, implementing and testing the API against that spec (taking a design-first approach).

At the risk of erring on the side of flexibility, Falcon does not provide API spec support out of the box. However, there
are several community projects available in this vein. Our Add on Catalog lists a couple of these projects, but you may
also wish to search PyPI for additional packages.

If you are interested in the design-first approach mentioned above, you may also want to check out API design and
gateway services such as Tyk, Apiary, Amazon API Gateway, or Google Cloud Endpoints.

Performance

Does Falcon work with HTTP/2?

Falcon is a WSGI framework and as such does not serve HTTP requests directly. However, you can get most of the
benefits of HTTP/2 by simply deploying any HTTP/2-compliant web server or load balancer in front of your app to
translate between HTTP/2 and HTTP/1.1. Eventually we expect that Python web servers (such as uWSGI) will support
HTTP/2 natively, eliminating the need for a translation layer.

Is Falcon thread-safe?

The Falcon framework is, itself, thread-safe. For example, new Request and Response objects are created for each
incoming HTTP request. However, a single instance of each resource class attached to a route is shared among all
requests. Middleware objects and other types of hooks, such as custom error handlers, are likewise shared. Therefore,
as long as you implement these classes and callables in a thread-safe manner, and ensure that any third-party libraries
used by your app are also thread-safe, your WSGI app as a whole will be thread-safe.

5.1. User Guide 77

https://github.com/falconry/falcon/wiki/Add-on-Catalog
https://pypi.python.org/pypi

Falcon Documentation, Release 3.0.1

Does Falcon support asyncio?

Starting with version 3.0, the ASGI flavor of Falcon now proudly supports asyncio! Use the falcon.asgi.App
class to create an async application, and serve it via an ASGI application server such as Uvicorn.

Alternatively, IO-bound WSGI applications can be scaled using the battle-tested gevent library via Gunicorn or
uWSGI. meinheld has also been used successfully by the community to power high-throughput, low-latency WSGI
services.

Tip: Note that if you use Gunicorn, you can combine gevent and PyPy to achieve an impressive level of performance.
(Unfortunately, uWSGI does not yet support using gevent and PyPy together.)

Does Falcon support WebSocket?

The async flavor of Falcon supports the ASGI WebSocket protocol. See also: WebSocket (ASGI Only).

WSGI applications might try leveraging uWSGI’s native WebSocket support or gevent-websocket’s
GeventWebSocketWorker for Gunicorn.

As an option, it may make sense to design WebSocket support as a separate service due to very different performance
characteristics and interaction patterns, compared to a regular RESTful API. In addition to (obviously!) Falcon’s native
ASGI support, a standalone WebSocket service could also be implemented via Aymeric Augustin’s handy websockets
library.

Routing

How do I implement CORS with Falcon?

In order for a website or SPA to access an API hosted under a different domain name, that API must implement Cross-
Origin Resource Sharing (CORS). For a public API, implementing CORS in Falcon can be as simple as passing the
cors_enable flag (set to True) when instantiating your application.

Further CORS customization is possible via CORSMiddleware (for more information on managing CORS in Falcon,
see also CORS).

For even more sophisticated use cases, have a look at Falcon add-ons from the community, such as falcon-cors, or try
one of the generic WSGI CORS libraries available on PyPI. If you use an API gateway, you might also look into what
CORS functionality it provides at that level.

How do I implement redirects within Falcon?

Falcon provides a number of exception classes that can be raised to redirect the client to a different location (see also
Redirection).

Note, however, that it is more efficient to handle permanent redirects directly with your web server, if possible, rather
than placing additional load on your app for such requests.

78 Chapter 5. Documentation

https://asgi.readthedocs.io/en/latest/
https://docs.python.org/3/library/asyncio.html#module-asyncio
http://www.gevent.org/
https://pypi.org/project/meinheld/
https://asgi.readthedocs.io/en/latest/
http://uwsgi.readthedocs.io/en/latest/WebSockets.html
https://pypi.org/project/gevent-websocket
https://pypi.python.org/pypi/websockets
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://github.com/lwcolton/falcon-cors
https://pypi.python.org/pypi?%3Aaction=search&term=cors&submit=search

Falcon Documentation, Release 3.0.1

How do I split requests between my original app and the part I migrated to Falcon?

It is common to carve out a portion of an app and reimplement it in Falcon to boost performance where it is most
needed.

If you have access to your load balancer or reverse proxy configuration, we recommend setting up path or subdomain-
based rules to split requests between your original implementation and the parts that have been migrated to Falcon
(e.g., by adding an additional location directive to your NGINX config).

If the above approach isn’t an option for your deployment, you can implement a simple WSGI wrapper that does the
same thing:

def application(environ, start_response):
try:

NOTE(kgriffs): Prefer the host header; the web server
isn't supposed to mess with it, so it should be what
the client actually sent.
host = environ['HTTP_HOST']

except KeyError:
NOTE(kgriffs): According to PEP-3333, this header
will always be present.
host = environ['SERVER_NAME']

if host.startswith('api.'):
return falcon_app(environ, start_response)

elif:
return webapp2_app(environ, start_response)

See also PEP 3333 for a complete list of the variables that are provided via environ.

How do I implement both POSTing and GETing items for the same resource?

Suppose you have the following routes:

Resource Collection
GET /resources{?marker, limit}
POST /resources

Resource Item
GET /resources/{id}
PATCH /resources/{id}
DELETE /resources/{id}

You can implement this sort of API by simply using two Python classes, one to represent a single resource, and
another to represent the collection of said resources. It is common to place both classes in the same module (see also
this section of the tutorial.)

Alternatively, you can use suffixed responders to map both routes to the same resource class:

class MyResource:
def on_get(self, req, resp, id):

pass

def on_patch(self, req, resp, id):
pass

(continues on next page)

5.1. User Guide 79

https://www.python.org/dev/peps/pep-3333/#environ-variables

Falcon Documentation, Release 3.0.1

(continued from previous page)

def on_delete(self, req, resp, id):
pass

def on_get_collection(self, req, resp):
pass

def on_post_collection(self, req, resp):
pass

-- snip --

resource = MyResource()
app.add_route('/resources/{id}', resource)
app.add_route('/resources', resource, suffix='collection')

What is the recommended way to map related routes to resource classes?

Let’s say we have the following URL schema:

GET /game/ping
GET /game/{game_id}
POST /game/{game_id}
GET /game/{game_id}/state
POST /game/{game_id}/state

We can break this down into three resources:

Ping:

GET /game/ping

Game:

GET /game/{game_id}
POST /game/{game_id}

GameState:

GET /game/{game_id}/state
POST /game/{game_id}/state

GameState may be thought of as a sub-resource of Game. It is a distinct logical entity encapsulated within a more
general Game concept.

In Falcon, these resources would be implemented with standard classes:

class Ping:

def on_get(self, req, resp):
resp.text = '{"message": "pong"}'

class Game:
(continues on next page)

80 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

(continued from previous page)

def __init__(self, dao):
self._dao = dao

def on_get(self, req, resp, game_id):
pass

def on_post(self, req, resp, game_id):
pass

class GameState:

def __init__(self, dao):
self._dao = dao

def on_get(self, req, resp, game_id):
pass

def on_post(self, req, resp, game_id):
pass

app = falcon.App()

Game and GameState are closely related, and so it
probably makes sense for them to share an object
in the Data Access Layer. This could just as
easily use a DB object or ORM layer.
#
Note how the resources classes provide a layer
of abstraction or indirection which makes your
app more flexible since the data layer can
evolve somewhat independently from the presentation
layer.
game_dao = myapp.DAL.Game(myconfig)

app.add_route('/game/ping', Ping())
app.add_route('/game/{game_id}', Game(game_dao))
app.add_route('/game/{game_id}/state', GameState(game_dao))

Alternatively, a single resource class could implement suffixed responders in order to handle all three routes:

class Game:

def __init__(self, dao):
self._dao = dao

def on_get(self, req, resp, game_id):
pass

def on_post(self, req, resp, game_id):
pass

def on_get_state(self, req, resp, game_id):
pass

(continues on next page)

5.1. User Guide 81

Falcon Documentation, Release 3.0.1

(continued from previous page)

def on_post_state(self, req, resp, game_id):
pass

def on_get_ping(self, req, resp):
resp.data = b'{"message": "pong"}'

-- snip --

app = falcon.App()

game = Game(myapp.DAL.Game(myconfig))

app.add_route('/game/{game_id}', game)
app.add_route('/game/{game_id}/state', game, suffix='state')
app.add_route('/game/ping', game, suffix='ping')

Extensibility

How do I use WSGI middleware with Falcon?

Instances of falcon.App are first-class WSGI apps, so you can use the standard pattern outlined in PEP-3333. In
your main “app” file, you would simply wrap your api instance with a middleware app. For example:

import my_restful_service
import some_middleware

app = some_middleware.DoSomethingFancy(my_restful_service.app)

See also the WSGI middleware example given in PEP-3333.

How can I pass data from a hook to a responder, and between hooks?

You can inject extra responder kwargs from a hook by adding them to the params dict passed into the hook. You can
also set custom attributes on the req.context object, as a way of passing contextual information around:

def authorize(req, resp, resource, params):
TODO: Check authentication/authorization

-- snip --

req.context.role = 'root'
req.context.scopes = ('storage', 'things')
req.context.uid = 0

-- snip --

@falcon.before(authorize)
def on_post(self, req, resp):

pass

82 Chapter 5. Documentation

https://www.python.org/dev/peps/pep-3333/#middleware-components-that-play-both-sides

Falcon Documentation, Release 3.0.1

How can I write a custom handler for 404 and 500 pages in falcon?

When a route can not be found for an incoming request, Falcon uses a default responder that simply raises an instance
of HTTPRouteNotFound, which the framework will in turn render as a 404 response. You can use falcon.
App.add_error_handler() to override the default handler for this exception type (or for its parent type,
HTTPNotFound). Alternatively, you may be able to configure your web server to transform the response for you
(e.g., using nginx’s error_page directive).

By default, non-system-exiting exceptions that do not inherit from HTTPError or HTTPStatus are handled by
Falcon with a plain HTTP 500 error. To provide your own 500 logic, you can add a custom error handler for Python’s
base Exception type. This will not affect the default handlers for HTTPError and HTTPStatus.

See Error Handling and the falcon.API.add_error_handler() docs for more details.

Request Handling

How do I authenticate requests?

Hooks and middleware components can be used together to authenticate and authorize requests. For example, a mid-
dleware component could be used to parse incoming credentials and place the results in req.context. Downstream
components or hooks could then use this information to authorize the request, taking into account the user’s role and
the requested resource.

Why does req.stream.read() hang for certain requests?

This behavior is an unfortunate artifact of the request body mechanics not being fully defined by the WSGI spec (PEP-
3333). This is discussed in the reference documentation for stream, and a workaround is provided in the form of
bounded_stream.

How does Falcon handle a trailing slash in the request path?

If your app sets strip_url_path_trailing_slash to True, Falcon will normalize incoming URI paths to
simplify later processing and improve the predictability of application logic. This can be helpful when implementing a
REST API schema that does not interpret a trailing slash character as referring to the name of an implicit sub-resource,
as traditionally used by websites to reference index pages.

For example, with this option enabled, adding a route for '/foo/bar' implicitly adds a route for '/foo/bar/'.
In other words, requests coming in for either path will be sent to the same resource.

Warning: If strip_url_path_trailing_slash is enabled, adding a route with a trailing slash will
effectively make it unreachable from normal routing (theoretically, it may still be matched by rewriting the request
path in middleware).

In this case, routes should be added without a trailing slash (obviously except the root path '/'), such as '/foo/
bar' in the example above.

Note: Starting with version 2.0, the default for the strip_url_path_trailing_slash request option changed
from True to False.

5.1. User Guide 83

https://docs.python.org/3/library/exceptions.html#Exception

Falcon Documentation, Release 3.0.1

Why is my query parameter missing from the req object?

If a query param does not have a value, Falcon will by default ignore that parameter. For example, passing 'foo' or
'foo=' will result in the parameter being ignored.

If you would like to recognize such parameters, you must set the keep_blank_qs_values request option to True.
Request options are set globally for each instance of falcon.API via the req_options property. For example:

app.req_options.keep_blank_qs_values = True

Why are ‘+’ characters in my params being converted to spaces?

The + character is often used instead of %20 to represent spaces in query string params, due to the historical conflation
of form parameter encoding (application/x-www-form-urlencoded) and URI percent-encoding. There-
fore, Falcon, converts + to a space when decoding strings.

To work around this, RFC 3986 specifies + as a reserved character, and recommends percent-encoding any such
characters when their literal value is desired (%2B in the case of +).

How can I access POSTed form params?

By default, Falcon does not consume request bodies. However, a media handler for the application/
x-www-form-urlencoded content type is installed by default, thus making the POSTed form available as
Request.media with zero configuration:

import falcon

class MyResource:
def on_post(self, req, resp):

TODO: Handle the submitted URL-encoded form
form = req.media

NOTE: Falcon chooses the right media handler automatically, but
if we wanted to differentiate from, for instance, JSON, we
could check whether req.content_type == falcon.MEDIA_URLENCODED
or use mimeparse to implement more sophisticated logic.

Note: In prior versions of Falcon, a POSTed URL-encoded form could be automatically consumed and merged into
params by setting the auto_parse_form_urlencoded option to True. This behavior is still supported in the
Falcon 3.x series. However, it has been deprecated in favor of URLEncodedFormHandler, and the option to merge
URL-encoded form data into params may be removed in a future release.

POSTed form parameters may also be read directly from stream and parsed via falcon.uri.
parse_query_string() or urllib.parse.parse_qs().

84 Chapter 5. Documentation

https://docs.python.org/3.6/library/urllib.parse.html#urllib.parse.parse_qs

Falcon Documentation, Release 3.0.1

How can I access POSTed files?

If files are POSTed as part of a multipart form, the default MultipartFormHandler can be used to efficiently
parse the submitted multipart/form-data request media by iterating over the multipart body parts:

for part in req.media:
TODO: Do something with the body part
pass

How can I save POSTed files (from a multipart form) directly to AWS S3?

As highlighted in the previous answer dealing with files posted as multipart form, falcon.media.
MultipartFormHandler may be used to iterate over the uploaded multipart body parts.

The stream of a body part is a file-like object implementing the read() method, making it compatible with boto3's
upload_fileobj:

import boto3

-- snip --

s3 = boto3.client('s3')

for part in req.media:
if part.name == 'myfile':

s3.upload_fileobj(part.stream, 'mybucket', 'mykey')

Note: Falcon is not endorsing any particular cloud service provider, and AWS S3 and boto3 are referenced here
just as a popular example. The same pattern can be applied to any storage API that supports streaming directly from a
file-like object.

How do I parse a nested multipart form?

Falcon does not offer official support for parsing nested multipart forms (i.e., where multiple files for a single field are
transmitted using a nested multipart/mixed part) at this time. The usage is considered deprecated according to
the living HTML5 standard and RFC 7578, Section 4.3.

Tip: If your app absolutely must deal with such legacy forms, the parser may actually be capable of the task. See
more in this recipe: Parsing Nested Multipart Forms.

5.1. User Guide 85

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.upload_fileobj
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html
https://tools.ietf.org/html/rfc7578#section-4.3

Falcon Documentation, Release 3.0.1

How do I retrieve a JSON value from the query string?

To retrieve a JSON-encoded value from the query string, Falcon provides the get_param_as_json() method, an
example of which is given below:

import falcon

class LocationResource:

def on_get(self, req, resp):
places = {

'Chandigarh, India': {
'lat': 30.692781,
'long': 76.740875

},

'Ontario, Canada': {
'lat': 43.539814,
'long': -80.246094

}
}

coordinates = req.get_param_as_json('place')

place = None
for (key, value) in places.items():

if coordinates == value:
place = key
break

resp.media = {
'place': place

}

app = falcon.API()
app.add_route('/locations', LocationResource())

In the example above, LocationResource expects a query string containing a JSON-encoded value named
'place'. This value can be fetched and decoded from JSON in a single step with the get_param_as_json()
method. Given a request URL such as:

/locations?place={"lat":43.539814,"long":-80.246094}

The coordinates variable will be set to a dict as expected.

By default, the auto_parse_qs_csv option is set to False. The example above assumes this default.

On the other hand, when auto_parse_qs_csv is set to True, Falcon treats commas in a query string as literal
characters delimiting a comma-separated list. For example, given the query string ?c=1,2,3, Falcon will add this
to your request.params dictionary as {'c': ['1', '2', '3']}. If you attempt to use JSON in the
value of the query string, for example ?c={"a":1,"b":2}, the value will be added to request.params in an
unexpected way: {'c': ['{"a":1', '"b":2}']}.

Commas are a reserved character that can be escaped according to RFC 3986 - 2.2. Reserved Characters, so one
possible solution is to percent encode any commas that appear in your JSON query string.

The other option is to leave auto_parse_qs_csv disabled and simply use JSON array syntax in lieu of CSV.

86 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://tools.ietf.org/html/rfc3986#section-2.2

Falcon Documentation, Release 3.0.1

When auto_parse_qs_csv is not enabled, the value of the query string ?c={"a":1,"b":2} will be added
to the req.params dictionary as {'c': '{"a":1,"b":2}'}. This lets you consume JSON whether or not
the client chooses to percent-encode commas in the request. In this case, you can retrieve the raw JSON string via
get_param(), or use the get_param_as_json() convenience method as demonstrated above.

How can I handle forward slashes within a route template field?

In Falcon 1.3 we shipped initial support for field converters. We’ve discussed building on this feature to support
consuming multiple path segments ala Flask. This work is currently planned to commence after the 3.0 release.

In the meantime, the workaround is to percent-encode the forward slash. If you don’t control the clients and can’t
enforce this, you can implement a Falcon middleware component to rewrite the path before it is routed.

How do I adapt my code to default context type changes in Falcon 2.0?

The default request/response context type has been changed from dict to a bare class in Falcon 2.0. Instead of setting
dictionary items, you can now simply set attributes on the object:

Before Falcon 2.0
req.context['cache_backend'] = MyUltraFastCache.connect()

Falcon 2.0
req.context.cache_backend = MyUltraFastCache.connect()

The new default context type emulates a dict-like mapping interface in a way that context attributes are linked to dict
items, i.e. setting an object attribute also sets the corresponding dict item, and vice versa. As a result, existing code
will largely work unmodified with Falcon 2.0. Nevertheless, it is recommended to migrate to the new interface as
outlined above since the dict-like mapping interface may be removed from the context type in a future release.

Warning: If you need to mix-and-match both approaches under migration, beware that setting attributes such as
items or values would obviously shadow the corresponding mapping interface functions.

If an existing project is making extensive use of dictionary contexts, the type can be explicitly overridden back to dict
by employing custom request/response types:

class RequestWithDictContext(falcon.Request):
context_type = dict

class ResponseWithDictContext(falcon.Response):
context_type = dict

-- snip --

app = falcon.App(request_type=RequestWithDictContext,
response_type=ResponseWithDictContext)

5.1. User Guide 87

http://falcon.readthedocs.io/en/stable/api/routing.html#field-converters

Falcon Documentation, Release 3.0.1

Response Handling

When would I use media, data, and stream?

These three parameters are mutually exclusive, you should only set one when defining your response.

resp.media is used when you want to use the Falcon serialization mechanism. Just assign data to the attribute and
falcon will take care of the rest.

class MyResource:
def on_get(self, req, resp):

resp.media = { 'hello': 'World' }

resp.text and resp.data are very similar, they both allow you to set the body of the response. The difference being, text
takes a string and data takes bytes.

class MyResource:
def on_get(self, req, resp):

resp.text = json.dumps({ 'hello': 'World' })

def on_post(self, req, resp):
resp.data = b'{ "hello": "World" }'

resp.stream allows you to set a file-like object which returns bytes. We will call read() until the object is consumed.

class MyResource:
def on_get(self, req, resp):

resp.stream = open('myfile.json', mode='rb')

How can I use resp.media with types like datetime?

The default JSON handler for resp.media only supports the objects and types listed in the table documented under
json.JSONEncoder. To handle additional types, you can either serialize them beforehand, or create a custom JSON
media handler that sets the default param for json.dumps(). When deserializing an incoming request body, you
may also wish to implement object_hook for json.loads(). Note, however, that setting the default or object_hook
params can negatively impact the performance of (de)serialization.

Does Falcon set Content-Length or do I need to do that explicitly?

Falcon will try to do this for you, based on the value of resp.text or resp.data (whichever is set in the response,
checked in that order.)

For dynamically-generated content, you can choose to not set content_length, in which case Falcon will then
leave off the Content-Length header, and hopefully your WSGI server will do the Right Thing™ (assuming you’ve
told the server to enable keep-alive, it may choose to use chunked encoding).

Note: PEP-3333 prohibits apps from setting hop-by-hop headers itself, such as Transfer-Encoding.

Similar to WSGI, the ASGI HTTP connection scope specification states that responses without Content-Length “may
be chunked as the server sees fit”.

88 Chapter 5. Documentation

https://docs.python.org/3.6/library/json.html#json.JSONEncoder
https://asgi.readthedocs.io/en/latest/specs/www.html#http-connection-scope

Falcon Documentation, Release 3.0.1

Why is an empty response body returned when I raise an instance of HTTPError?

Falcon attempts to serialize the HTTPError instance using its to_json() or to_xml() methods, according to
the Accept header in the request. If neither JSON nor XML is acceptable, no response body will be generated. You
can override this behavior if needed via set_error_serializer().

I’m setting a response body, but it isn’t getting returned. What’s going on?

Falcon skips processing the response body when, according to the HTTP spec, no body should be returned. If the
client sends a HEAD request, the framework will always return an empty body. Falcon will also return an empty body
whenever the response status is any of the following:

falcon.HTTP_100
falcon.HTTP_204
falcon.HTTP_416
falcon.HTTP_304

If you have another case where the body isn’t being returned, it’s probably a bug! Let us know so we can help.

I’m setting a cookie, but it isn’t being returned in subsequent requests.

By default, Falcon enables the secure cookie attribute. Therefore, if you are testing your app over HTTP (instead of
HTTPS), the client will not send the cookie in subsequent requests.

(See also the cookie documentation.)

How can I serve a downloadable file with Falcon?

In the on_get() responder method for the resource, you can tell the user agent to download the file by setting the
Content-Disposition header. Falcon includes the downloadable_as property to make this easy:

resp.downloadable_as = 'report.pdf'

See also the Outputting CSV Files recipe for a more involved example of dynamically generated downloadable content.

Why is Falcon changing my header names to lowercase?

Falcon always lowercases header names before storing them in the internal Response structures in order to make the
response header handling straightforward and performant, as header name lookup can be done using a simple dict.
Since HTTP headers are case insensitive, this optimization should normally not affect your API consumers.

In the unlikely case you absolutely must deal with non-conformant HTTP clients expecting a specific header name
capitalization, see this recipe how to override header names using generic WSGI middleware: Capitalizing Response
Header Names.

Note that this question only applies to the WSGI flavor of Falcon. The ASGI HTTP scope specification requires HTTP
header names to be lowercased.

Furthermore, the HTTP2 standard also mandates that header field names MUST be converted to lowercase (see RFC
7540, Section 8.1.2).

5.1. User Guide 89

https://asgi.readthedocs.io/en/latest/specs/www.html#response-start-send-event
https://httpwg.org/specs/rfc7540.html#rfc.section.8.1.2
https://httpwg.org/specs/rfc7540.html#rfc.section.8.1.2

Falcon Documentation, Release 3.0.1

Can Falcon serve static files?

Falcon makes it easy to efficiently serve static files by simply assigning an open file to resp.stream as demon-
strated in the tutorial. You can also serve an entire directory of files via falcon.App.add_static_route().
However, if possible, it is best to serve static files directly from a web server like Nginx, or from a CDN.

Misc.

How do I manage my database connections?

Assuming your database library manages its own connection pool, all you need to do is initialize the client and pass
an instance of it into your resource classes. For example, using SQLAlchemy Core:

engine = create_engine('sqlite:///:memory:')
resource = SomeResource(engine)

Then, within SomeResource:

Read from the DB
result = self._engine.execute(some_table.select())
for row in result:

TODO: Do something with each row

result.close()

-- snip --

Write to the DB within a transaction
with self._engine.begin() as connection:

r1 = connection.execute(some_table.select())

-- snip --

connection.execute(
some_table.insert(),
col1=7,
col2='this is some data'

)

When using a data access layer, simply pass the engine into your data access objects instead. See also this sample
Falcon project that demonstrates using an ORM with Falcon.

You can also create a middleware component to automatically check out database connections for each request, but
this can make it harder to track down errors, or to tune for the needs of individual requests.

If you need to transparently handle reconnecting after an error, or for other use cases that may not be supported by
your client library, simply encapsulate the client library within a management class that handles all the tricky bits, and
pass that around instead.

90 Chapter 5. Documentation

https://github.com/jmvrbanac/falcon-example
https://github.com/jmvrbanac/falcon-example

Falcon Documentation, Release 3.0.1

What is the recommended approach for app configuration?

When it comes to app configuration, Falcon is not opinionated. You are free to choose from any of the excellent
general-purpose configuration libraries maintained by the Python community. It’s pretty much up to you if you want
to use the standard library or something like aumbry as demonstrated by this falcon example app

(See also the Configuration section of our Complementary Packages wiki page. You may also wish to search PyPI
for other options).

After choosing a configuration library, the only remaining question is how to access configuration options throughout
your app.

People usually fall into two camps when it comes to this question. The first camp likes to instantiate a config object
and pass that around to the initializers of the resource classes so the data sharing is explicit. The second camp likes to
create a config module and import that wherever it’s needed.

With the latter approach, to control when the config is actually loaded, it’s best not to instantiate it at the top level of
the config module’s namespace. This avoids any problematic side-effects that may be caused by loading the config
whenever Python happens to process the first import of the config module. Instead, consider implementing a function
in the module that returns a new or cached config object on demand.

How do I test my Falcon app? Can I use pytest?

Falcon’s testing framework supports both unittest and pytest. In fact, the tutorial in the docs provides an
excellent introduction to testing Falcon apps with pytest.

(See also: Testing)

How can I set cookies when simulating requests?

The easiest way is to simply pass the cookies parameter into simulate_request. Here is an example:

import falcon
import falcon.testing
import pytest

class TastyCookies:

def on_get(self, req, resp):
resp.media = {'cookies': req.cookies}

@pytest.fixture
def client():

app = falcon.App()
app.add_route('/cookies', TastyCookies())

return falcon.testing.TestClient(app)

def test_cookies(client):
resp = client.simulate_get('/cookies', cookies={'cookie': 'cookie value'})

assert resp.json == {'cookies': {'cookie': 'cookie value'}}

Alternatively, you can set the Cookie header directly as demonstrated in this version of test_cookies()

5.1. User Guide 91

https://github.com/jmvrbanac/falcon-example/tree/master/example
https://github.com/falconry/falcon/wiki/Complementary-Packages
http://falcon.readthedocs.io/en/stable/user/tutorial.html#testing-your-application
http://falcon.readthedocs.io/en/stable/api/testing.html

Falcon Documentation, Release 3.0.1

def test_cookies(client):
resp = client.simulate_get('/cookies', headers={'Cookie': 'xxx=yyy'})

assert resp.json == {'cookies': {'xxx': 'yyy'}}

To include multiple values, simply use "; " to separate each name-value pair. For example, if you were to
pass {'Cookie': 'xxx=yyy; hello=world'}, you would get {'cookies': {'xxx': 'yyy',
'hello': 'world'}}.

5.2 Deployment Guide

5.2.1 Preamble & Disclaimer

Falcon conforms to the standard WSGI protocol that most Python web applications have been using since 2003. If
you have deployed Python applications like Django, Flask, or others, you will find yourself quite at home with Falcon
and your standard Apache/mod_wsgi, gunicorn, or other WSGI servers should suffice.

There are many ways to deploy a Python application. The aim of these quickstarts is to simply get you up and
running, not to give you a perfectly tuned or secure environment. You will almost certainly need to customize these
configurations for any serious production deployment.

5.2.2 Deploying Falcon on Linux with NGINX and uWSGI

NGINX is a powerful web server and reverse proxy and uWSGI is a fast and highly-configurable WSGI application
server. Together, NGINX and uWSGI create a one-two punch of speed and functionality which will suffice for most
applications. In addition, this stack provides the building blocks for a horizontally-scalable and highly-available (HA)
production environment and the configuration below is just a starting point.

This guide provides instructions for deploying to a Linux environment only. However, with a bit of effort you should
be able to adapt this configuration to other operating systems, such as OpenBSD.

Running your Application as a Different User

It is best to execute the application as a different OS user than the one who owns the source code for your application.
The application user should NOT have write access to your source. This mitigates the chance that someone could write
a malicious Python file to your source directory through an upload endpoint you might define; when your application
restarts, the malicious file is loaded and proceeds to cause any number of Bad Things™ to happen.

$ useradd myproject --create-home
$ useradd myproject-runner --no-create-home

It is helpful to switch to the project user (myproject) and use the home directory as the application environment.

If you are working on a remote server, switch to the myproject user and pull down the source code for your application.

$ git clone git@github.com/myorg/myproject.git /home/myproject/src

Note: You could use a tarball, zip file, scp or any other means to get your source onto a server.

Next, create a virtual environment which can be used to install your dependencies.

92 Chapter 5. Documentation

https://www.python.org/dev/peps/pep-0333/

Falcon Documentation, Release 3.0.1

$ python3 -m venv /home/myproject/venv

Then install your dependencies.

$ /home/myproject/venv/bin/pip install -r /home/myproject/src/requirements.txt
$ /home/myproject/venv/bin/pip install -e /home/myproject/src
$ /home/myproject/venv/bin/pip install uwsgi

Note: The exact commands for creating a virtual environment might differ based on the Python version you are using
and your operating system. At the end of the day the application needs a virtualenv in /home/myproject/venv with
the project dependencies installed. Use the pip binary within the virtual environment by source venv/bin/
activate or using the full path.

Preparing your Application for Service

For the purposes of this tutorial, we’ll assume that you have implemented a way to configure your application, such as
with a create_app() function or a module-level script. The role of this function or script is to supply an instance
of falcon.App, which implements the standard WSGI callable interface.

You will need to expose the falcon.App instance in some way so that uWSGI can find it. For this tutorial we
recommend creating a wsgi.py file. Modify the logic of the following example file to properly configure your
application. Ensure that you expose a variable called application which is assigned to your falcon.App
instance.

Listing 1: /home/myproject/src/wsgi.py

import os
import myproject

Replace with your app's method of configuration
config = myproject.get_config(os.environ['MYPROJECT_CONFIG'])

uWSGI will look for this variable
application = myproject.create_app(config)

Note that in the above example, the WSGI callable is simple assigned to a variable, application, rather than being
passed to a self-hosting WSGI server such as wsgiref.simple_server.make_server. Starting an independent WSGI
server in your wsgi.py file will render unexpected results.

Deploying Falcon behind uWSGI

With your wsgi.py file in place, it is time to configure uWSGI. Start by creating a simple uwsgi.ini file. In
general, you shouldn’t commit this file to source control; it should be generated from a template by your deployment
toolchain according to the target environment (number of CPUs, etc.).

This configuration, when executed, will create a new uWSGI server backed by your wsgi.py file and listening at
127.0.0.1:8080.

Listing 2: /home/myproject/src/uwsgi.ini

[uwsgi]
master = 1

(continues on next page)

5.2. Deployment Guide 93

Falcon Documentation, Release 3.0.1

(continued from previous page)

vacuum = true
socket = 127.0.0.1:8080
enable-threads = true
thunder-lock = true
threads = 2
processes = 2
virtualenv = /home/myproject/venv
wsgi-file = /home/myproject/src/wsgi.py
chdir = /home/myproject/src
uid = myproject-runner
gid = myproject-runner

Note: Threads vs. Processes

There are many questions to consider when deciding how to manage the processes that actually run your Python code.
Are you generally CPU bound or IO bound? Is your application thread-safe? How many CPU’s do you have? What
system are you on? Do you need an in-process cache?

The configuration presented here enables both threads and processes. However, you will have to experiment and
do some research to understand your application’s unique requirements, and then tailor your uWSGI configuration
accordingly. Generally speaking, uWSGI is flexible enough to support most types of applications.

Note: TCP vs. UNIX Sockets

NGINX and uWSGI can communicate via normal TCP (using an IP address) or UNIX sockets (using a socket file).
TCP sockets are easier to set up and generally work for simple deployments. If you want to have finer control over
which processes, users, or groups may access the uWSGI application, or you are looking for a bit of a speed boost,
consider using UNIX sockets. uWSGI can automatically drop privileges with chmod-socket and switch users with
chown-socket.

The uid and gid settings, as shown above, are critical to securing your deployment. These values control the OS-
level user and group the server will use to execute the application. The specified OS user and group should not have
write permissions to the source directory. In this case, we use the myproject-runner user that was created earlier for
this purpose.

You can now start uWSGI like this:

$ /home/myproject/venv/bin/uwsgi -c uwsgi.ini

If everything goes well, you should see something like this:

*** Operational MODE: preforking+threaded ***
...
*** uWSGI is running in multiple interpreter mode ***
...
spawned uWSGI master process (pid: 91828)
spawned uWSGI worker 1 (pid: 91866, cores: 2)
spawned uWSGI worker 2 (pid: 91867, cores: 2)

Note: It is always a good idea to keep an eye on the uWSGI logs, as they will contain exceptions and other information
from your application that can help shed some light on unexpected behaviors.

94 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

Connecting NGINX and uWSGI

Although uWSGI may serve HTTP requests directly, it can be helpful to use a reverse proxy, such as NGINX, to
offload TLS negotiation, static file serving, etc.

NGINX natively supports the uwsgi protocol, for efficiently proxying requests to uWSGI. In NGINX parlance, we
will create an “upstream” and direct that upstream (via a TCP socket) to our now-running uWSGI application.

Before proceeding, install NGINX according to the instructions for your platform.

Then, create an NGINX conf file that looks something like this:

Listing 3: /etc/nginx/sites-available/myproject.conf

server {
listen 80;
server_name myproject.com;

access_log /var/log/nginx/myproject-access.log;
error_log /var/log/nginx/myproject-error.log warn;

location / {
uwsgi_pass 127.0.0.1:8080
include uwsgi_params;

}
}

Finally, start (or restart) NGINX:

$ sudo service start nginx

You should now have a working application. Check your uWSGI and NGINX logs for errors if the application does
not start.

Further Considerations

We did not explain how to configure TLS (HTTPS) for NGINX, leaving that as an exercise for the reader. However,
we do recommend using Let’s Encrypt, which offers free, short-term certificates with auto-renewal. Visit the Let’s
Encrypt site to learn how to integrate their service directly with NGINX.

In addition to setting up NGINX and uWSGI to run your application, you will of course need to deploy a database
server or any other services required by your application. Due to the wide variety of options and considerations in this
space, we have chosen not to include ancillary services in this guide. However, the Falcon community is always happy
to help with deployment questions, so please don’t hesitate to ask.

5.3 Community Guide

5.3.1 Get Help

Welcome to the Falcon community! We are a pragmatic group of HTTP enthusiasts working on the next generation of
web apps and cloud services. We would love to have you join us and share your ideas.

Please help us spread the word and grow the community!

5.3. Community Guide 95

https://uwsgi-docs.readthedocs.io/en/latest/Protocol.html
https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-open-source/
https://certbot.eff.org/
https://certbot.eff.org/
https://falcon.readthedocs.io/en/stable/community/help.html#chat

Falcon Documentation, Release 3.0.1

FAQ

First, take a quick look at our FAQ to see if your question has already been addressed. If not, or if the answer is
unclear, please don’t hesitate to reach out via one of the channels below.

Chat

The Falconry community on Gitter is a great place to ask questions and share your ideas. You can find us in fal-
conry/user. We also have a falconry/dev room for discussing the design and development of the framework itself.

Per our Code of Conduct, we expect everyone who participates in community discussions to act professionally, and
lead by example in encouraging constructive discussions. Each individual in the community is responsible for creating
a positive, constructive, and productive culture.

Submit Issues

If you have an idea for a feature, run into something that is harder to use than it should be, or find a bug, please let the
crew know in falconry/dev or by submitting an issue. We need your help to make Falcon awesome!

Pay it Forward

We’d like to invite you to help other community members with their questions in falconry/user, and to help peer-review
pull requests. If you use the Chrome browser, we recommend installing the NotHub extension to stay up to date with
PRs.

If you would like to contribute a new feature or fix a bug in the framework, please check out our Contributor’s Guide
for more information.

We’d love to have your help!

Code of Conduct

All contributors and maintainers of this project are subject to our Code of Conduct.

5.3.2 Contribute to Falcon

Thanks for your interest in the project! We welcome pull requests from developers of all skill levels. To get started,
simply fork the master branch on GitHub to your personal account and then clone the fork into your development
environment.

The core Falcon project maintainers are:

• Kurt Griffiths, Project Lead (kgriffs on GH, Gitter, and Twitter)

• John Vrbanac (jmvrbanac on GH, Gitter, and Twitter)

• Vytautas Liuolia (vytas7 on GH and Gitter, and vliuolia on Twitter)

• Nick Zaccardi (nZac on GH and Gitter)

• Federico Caselli (CaselIT on GH and Gitter)

96 Chapter 5. Documentation

https://gitter.im/falconry/user
https://gitter.im/falconry/user
https://gitter.im/falconry/dev
https://github.com/falconry/falcon/blob/master/CODEOFCONDUCT.md
https://gitter.im/falconry/dev
https://github.com/falconry/falcon/issues
https://gitter.im/falconry/user
https://github.com/falconry/falcon/pulls
http://nothub.org/
https://github.com/falconry/falcon/blob/master/CONTRIBUTING.md
https://github.com/falconry/falcon/blob/master/CODEOFCONDUCT.md

Falcon Documentation, Release 3.0.1

Falcon is developed by a growing community of users and contributors just like you!

Please don’t hesitate to reach out if you have any questions, or just need a little help getting started. You can find us in
falconry/dev on Gitter.

Please check out our Contributor’s Guide for more information.

Thanks!

5.4 Framework Reference

5.4.1 The App Class

• WSGI App

• ASGI App

• Options

Falcon supports both the WSGI (falcon.App) and ASGI (falcon.asgi.App) protocols. This is done by in-
stantiating the respective App class to create a callable WSGI or ASGI “application”.

Because Falcon’s App classes are built on WSGI and ASGI, you can host them with any standard-compliant server.

import falcon
import falcon.asgi

wsgi_app = falcon.App()
asgi_app = falcon.asgi.App()

WSGI App

class falcon.App(media_type='application/json', request_type=<class 'falcon.request.Request'>, re-
sponse_type=<class 'falcon.response.Response'>, middleware=None, router=None,
independent_middleware=True, cors_enable=False, sink_before_static_route=True)

This class is the main entry point into a Falcon-based WSGI app.

Each App instance provides a callable WSGI interface and a routing engine (for ASGI applications, see
falcon.asgi.App).

Note: The API class was renamed to App in Falcon 3.0. The old class name remains available as an alias for
backwards-compatibility, but will be removed in a future release.

Keyword Arguments

• media_type (str) – Default media type to use when initializing RequestOptions
and ResponseOptions. The falcon module provides a number of constants for
common media types, such as falcon.MEDIA_MSGPACK, falcon.MEDIA_YAML,
falcon.MEDIA_XML, etc.

• middleware – Either a single middleware component object or an iterable of objects
(instantiated classes) that implement the following middleware component interface. Note
that it is only necessary to implement the methods for the events you would like to handle;
Falcon simply skips over any missing middleware methods:

5.4. Framework Reference 97

https://gitter.im/falconry/dev
https://github.com/falconry/falcon/blob/master/CONTRIBUTING.md
https://www.python.org/dev/peps/pep-3333/
https://asgi.readthedocs.io/en/latest/
https://www.python.org/dev/peps/pep-3333/
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

class ExampleComponent:
def process_request(self, req, resp):

"""Process the request before routing it.

Note:
Because Falcon routes each request based on
req.path, a request can be effectively re-routed
by setting that attribute to a new value from
within process_request().

Args:
req: Request object that will eventually be

routed to an on_* responder method.
resp: Response object that will be routed to

the on_* responder.
"""

def process_resource(self, req, resp, resource, params):
"""Process the request and resource *after* routing.

Note:
This method is only called when the request matches
a route to a resource.

Args:
req: Request object that will be passed to the

routed responder.
resp: Response object that will be passed to the

responder.
resource: Resource object to which the request was

routed. May be None if no route was found for
the request.

params: A dict-like object representing any
additional params derived from the route's URI
template fields, that will be passed to the
resource's responder method as keyword
arguments.

"""

def process_response(self, req, resp, resource, req_succeeded)
"""Post-processing of the response (after routing).

Args:
req: Request object.
resp: Response object.
resource: Resource object to which the request was

routed. May be None if no route was found
for the request.

req_succeeded: True if no exceptions were raised
while the framework processed and routed the
request; otherwise False.

"""

(See also: Middleware)

• request_type – Request-like class to use instead of Falcon’s default class. Among
other things, this feature affords inheriting from falcon.Request in order to override
the context_type class variable (default: falcon.Request)

98 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

• response_type – Response-like class to use instead of Falcon’s default class (default:
falcon.Response)

• router (object) – An instance of a custom router to use in lieu of the default engine.
(See also: Custom Routers)

• independent_middleware (bool) – Set to False if response middleware should
not be executed independently of whether or not request middleware raises an excep-
tion (default True). When this option is set to False, a middleware component’s
process_response() method will NOT be called when that same component’s
process_request() (or that of a component higher up in the stack) raises an exception.

• cors_enable (bool) – Set this flag to True to enable a simple CORS policy for all re-
sponses, including support for preflighted requests. An instance of CORSMiddleware can
instead be passed to the middleware argument to customize its behaviour. (default False).
(See also: CORS)

• sink_before_static_route (bool) – Indicates if the sinks should be processed
before (when True) or after (when False) the static routes. This has an effect only if no
route was matched. (default True)

req_options
A set of behavioral options related to incoming requests. (See also: RequestOptions)

resp_options
A set of behavioral options related to outgoing responses. (See also: ResponseOptions)

router_options
Configuration options for the router. If a custom router is in use, and it does not expose any configurable
options, referencing this attribute will raise an instance of AttributeError.

(See also: CompiledRouterOptions)

add_error_handler(exception, handler=None)
Register a handler for one or more exception types.

Error handlers may be registered for any exception type, including HTTPError or HTTPStatus. This
feature provides a central location for logging and otherwise handling exceptions raised by responders,
hooks, and middleware components.

A handler can raise an instance of HTTPError or HTTPStatus to communicate information about the
issue to the client. Alternatively, a handler may modify resp directly.

An error handler “matches” a raised exception if the exception is an instance of the corresponding excep-
tion type. If more than one error handler matches the raised exception, the framework will choose the most
specific one, as determined by the method resolution order of the raised exception type. If multiple error
handlers are registered for the same exception class, then the most recently-registered handler is used.

For example, suppose we register error handlers as follows:

app = App()
app.add_error_handler(falcon.HTTPNotFound, custom_handle_not_found)
app.add_error_handler(falcon.HTTPError, custom_handle_http_error)
app.add_error_handler(Exception, custom_handle_uncaught_exception)
app.add_error_handler(falcon.HTTPNotFound, custom_handle_404)

If an instance of falcon.HTTPForbidden is raised, it will be handled by
custom_handle_http_error(). falcon.HTTPError is a superclass of falcon.
HTTPForbidden and a subclass of Exception, so it is the most specific exception type with a
registered handler.

5.4. Framework Reference 99

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

If an instance of falcon.HTTPNotFound is raised, it will be handled by custom_handle_404(),
not by custom_handle_not_found(), because custom_handle_404() was registered more
recently.

Note: By default, the framework installs three handlers, one for HTTPError, one for HTTPStatus, and
one for the standard Exception type, which prevents passing uncaught exceptions to the WSGI server.
These can be overridden by adding a custom error handler method for the exception type in question.

Parameters

• exception (type or iterable of types) – When handling a request, when-
ever an error occurs that is an instance of the specified type(s), the associated handler will
be called. Either a single type or an iterable of types may be specified.

• handler (callable) – A function or callable object taking the form func(req,
resp, ex, params).

If not specified explicitly, the handler will default to exception.handle, where
exception is the error type specified above, and handle is a static method (i.e., deco-
rated with @staticmethod) that accepts the same params just described. For example:

class CustomException(CustomBaseException):

@staticmethod
def handle(req, resp, ex, params):

TODO: Log the error
Convert to an instance of falcon.HTTPError
raise falcon.HTTPError(falcon.HTTP_792)

If an iterable of exception types is specified instead of a single type, the handler must be
explicitly specified.

Changed in version 3.0: The error handler is now selected by the most-specific matching error class, rather
than the most-recently registered matching error class.

add_middleware(middleware)
Add one or more additional middleware components.

Parameters middleware – Either a single middleware component or an iterable of compo-
nents to add. The component(s) will be invoked, in order, as if they had been appended to
the original middleware list passed to the class initializer.

add_route(uri_template, resource, **kwargs)
Associate a templatized URI path with a resource.

Falcon routes incoming requests to resources based on a set of URI templates. If the path requested by the
client matches the template for a given route, the request is then passed on to the associated resource for
processing.

Note: If no route matches the request, control then passes to a default responder that simply raises an
instance of HTTPRouteNotFound. By default, this error will be rendered as a 404 response, but this
behavior can be modified by adding a custom error handler (see also this FAQ topic).

On the other hand, if a route is matched but the resource does not implement a responder for
the requested HTTP method, the framework invokes a default responder that raises an instance of
HTTPMethodNotAllowed.

100 Chapter 5. Documentation

https://docs.python.org/3/library/functions.html#type

Falcon Documentation, Release 3.0.1

This method delegates to the configured router’s add_route()method. To override the default behavior,
pass a custom router object to the App initializer.

(See also: Routing)

Parameters

• uri_template (str) – A templatized URI. Care must be taken to ensure the template
does not mask any sink patterns, if any are registered.

(See also: add_sink())

Warning: If strip_url_path_trailing_slash is enabled, uri_template
should be provided without a trailing slash.

(See also: How does Falcon handle a trailing slash in the request path?)

• resource (instance) – Object which represents a REST resource. Falcon will pass
GET requests to on_get(), PUT requests to on_put(), etc. If any HTTP methods are
not supported by your resource, simply don’t define the corresponding request handlers,
and Falcon will do the right thing.

Note: When using an async version of the App, all request handlers must be awaitable
coroutine functions.

Keyword Arguments

• suffix (str) – Optional responder name suffix for this route. If a suffix is pro-
vided, Falcon will map GET requests to on_get_{suffix}(), POST requests to
on_post_{suffix}(), etc. In this way, multiple closely-related routes can be mapped
to the same resource. For example, a single resource class can use suffixed responders to
distinguish requests for a single item vs. a collection of those same items. Another class
might use a suffixed responder to handle a shortlink route in addition to the regular route
for the resource. For example:

class Baz(object):

def on_get_foo(self, req, resp):
pass

def on_get_bar(self, req, resp):
pass

baz = Baz()
app = falcon.App()
app.add_route('/foo', baz, suffix='foo')
app.add_route('/bar', baz, suffix='bar')

• compile (bool) – Optional flag that can be provided when using the default
CompiledRouter to compile the routing logic on this call, since it will otherwise delay
compilation until the first request is routed. See CompiledRouter.add_route()
for further details.

Note: Any additional keyword arguments not defined above are passed through to the underlying router’s
add_route()method. The default router ignores any additional keyword arguments, but custom routers

5.4. Framework Reference 101

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

may take advantage of this feature to receive additional options when setting up routes. Custom routers
MUST accept such arguments using the variadic pattern (**kwargs), and ignore any keyword arguments
that they don’t support.

add_sink(sink, prefix='/')
Register a sink method for the App.

If no route matches a request, but the path in the requested URI matches a sink prefix, Falcon will pass
control to the associated sink, regardless of the HTTP method requested.

Using sinks, you can drain and dynamically handle a large number of routes, when creating static resources
and responders would be impractical. For example, you might use a sink to create a smart proxy that
forwards requests to one or more backend services.

Parameters

• sink (callable) – A callable taking the form func(req, resp, **kwargs).

Note: When using an async version of the App, this must be a coroutine.

• prefix (str) – A regex string, typically starting with ‘/’, which will trigger the sink if it
matches the path portion of the request’s URI. Both strings and precompiled regex objects
may be specified. Characters are matched starting at the beginning of the URI path.

Note: Named groups are converted to kwargs and passed to the sink as such.

Warning: If the prefix overlaps a registered route template, the route will take prece-
dence and mask the sink.

(See also: add_route())

add_static_route(prefix, directory, downloadable=False, fallback_filename=None)
Add a route to a directory of static files.

Static routes provide a way to serve files directly. This feature provides an alternative to serving files at the
web server level when you don’t have that option, when authorization is required, or for testing purposes.

Warning: Serving files directly from the web server, rather than through the Python app, will always
be more efficient, and therefore should be preferred in production deployments. For security reasons,
the directory and the fallback_filename (if provided) should be read only for the account running the
application.

Note: For ASGI apps, file reads are made non-blocking by scheduling them on the default executor.

Static routes are matched in LIFO order. Therefore, if the same prefix is used for two routes, the second
one will override the first. This also means that more specific routes should be added after less specific
ones. For example, the following sequence would result in '/foo/bar/thing.js' being mapped to
the '/foo/bar' route, and '/foo/xyz/thing.js' being mapped to the '/foo' route:

102 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

app.add_static_route('/foo', foo_path)
app.add_static_route('/foo/bar', foobar_path)

Parameters

• prefix (str) – The path prefix to match for this route. If the path in the requested URI
starts with this string, the remainder of the path will be appended to the source directory
to determine the file to serve. This is done in a secure manner to prevent an attacker from
requesting a file outside the specified directory.

Note that static routes are matched in LIFO order, and are only attempted after checking
dynamic routes and sinks.

• directory (str) – The source directory from which to serve files.

• downloadable (bool) – Set to True to include a Content-Disposition header in the
response. The “filename” directive is simply set to the name of the requested file.

• fallback_filename (str) – Fallback filename used when the requested file is not
found. Can be a relative path inside the prefix folder or any valid absolute path.

set_error_serializer(serializer)
Override the default serializer for instances of HTTPError.

When a responder raises an instance of HTTPError, Falcon converts it to an HTTP response automat-
ically. The default serializer supports JSON and XML, but may be overridden by this method to use a
custom serializer in order to support other media types.

Note: If a custom media type is used and the type includes a “+json” or “+xml” suffix, the default
serializer will convert the error to JSON or XML, respectively.

Note: A custom serializer set with this method may not be called if the default error handler for
HTTPError has been overriden. See add_error_handler() for more details.

The HTTPError class contains helper methods, such as to_json() and to_dict(), that can be used from
within custom serializers. For example:

def my_serializer(req, resp, exception):
representation = None

preferred = req.client_prefers((falcon.MEDIA_YAML, falcon.MEDIA_JSON))

if preferred is not None:
if preferred == falcon.MEDIA_JSON:

resp.data = exception.to_json()
else:

resp.text = yaml.dump(exception.to_dict(), encoding=None)
resp.content_type = preferred

resp.append_header('Vary', 'Accept')

Parameters serializer (callable) – A function taking the form func(req, resp,
exception), where req is the request object that was passed to the responder method, resp
is the response object, and exception is an instance of falcon.HTTPError.

5.4. Framework Reference 103

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

ASGI App

class falcon.asgi.App(*args, request_type=<class 'falcon.asgi.request.Request'>, re-
sponse_type=<class 'falcon.asgi.response.Response'>, **kwargs)

This class is the main entry point into a Falcon-based ASGI app.

Each App instance provides a callable ASGI interface and a routing engine (for WSGI applications, see
falcon.App).

Keyword Arguments

• media_type (str) – Default media type to use when initializing RequestOptions
and ResponseOptions. The falcon module provides a number of constants for
common media types, such as falcon.MEDIA_MSGPACK, falcon.MEDIA_YAML,
falcon.MEDIA_XML, etc.

• middleware – Either a single middleware component object or an iterable of objects
(instantiated classes) that implement the middleware component interface shown below.

The interface provides support for handling both ASGI worker lifespan events and per-
request events. However, because lifespan events are an optional part of the ASGI specifi-
cation, they may or may not fire depending on your ASGI server.

A lifespan event handler can be used to perform startup or shutdown activities for the main
event loop. An example of this would be creating a connection pool and subsequently
closing the connection pool to release the connections.

Note: In a multi-process environment, lifespan events will be triggered independently for
the individual event loop associated with each process.

Note: The framework requires that all middleware methods be implemented as corou-
tine functions via async def. However, it is possible to implement middleware classes that
support both ASGI and WSGI apps by distinguishing the ASGI methods with an *_async
postfix (see also: Middleware).

It is only necessary to implement the methods for the events you would like to handle;
Falcon simply skips over any missing middleware methods:

class ExampleComponent:
async def process_startup(self, scope, event):

"""Process the ASGI lifespan startup event.

Invoked when the server is ready to start up and
receive connections, but before it has started to
do so.

To halt startup processing and signal to the server that it
should terminate, simply raise an exception and the
framework will convert it to a "lifespan.startup.failed"
event for the server.

Args:
scope (dict): The ASGI scope dictionary for the

lifespan protocol. The lifespan scope exists
for the duration of the event loop.

(continues on next page)

104 Chapter 5. Documentation

https://asgi.readthedocs.io/en/latest/
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

(continued from previous page)

event (dict): The ASGI event dictionary for the
startup event.

"""

async def process_shutdown(self, scope, event):
"""Process the ASGI lifespan shutdown event.

Invoked when the server has stopped accepting
connections and closed all active connections.

To halt shutdown processing and signal to the server
that it should immediately terminate, simply raise an
exception and the framework will convert it to a
"lifespan.shutdown.failed" event for the server.

Args:
scope (dict): The ASGI scope dictionary for the

lifespan protocol. The lifespan scope exists
for the duration of the event loop.

event (dict): The ASGI event dictionary for the
shutdown event.

"""

async def process_request(self, req, resp):
"""Process the request before routing it.

Note:
Because Falcon routes each request based on
req.path, a request can be effectively re-routed
by setting that attribute to a new value from
within process_request().

Args:
req: Request object that will eventually be

routed to an on_* responder method.
resp: Response object that will be routed to

the on_* responder.
"""

async def process_resource(self, req, resp, resource, params):
"""Process the request and resource *after* routing.

Note:
This method is only called when the request matches
a route to a resource.

Args:
req: Request object that will be passed to the

routed responder.
resp: Response object that will be passed to the

responder.
resource: Resource object to which the request was

routed. May be ``None`` if no route was found for
the request.

params: A dict-like object representing any
additional params derived from the route's URI
template fields, that will be passed to the

(continues on next page)

5.4. Framework Reference 105

Falcon Documentation, Release 3.0.1

(continued from previous page)

resource's responder method as keyword
arguments.

"""

async def process_response(self, req, resp, resource, req_
→˓succeeded)

"""Post-processing of the response (after routing).

Args:
req: Request object.
resp: Response object.
resource: Resource object to which the request was

routed. May be ``None`` if no route was found
for the request.

req_succeeded: True if no exceptions were raised
while the framework processed and routed the
request; otherwise False.

"""

(See also: Middleware)

• request_type – Request-like class to use instead of Falcon’s default class. Among
other things, this feature affords inheriting from falcon.asgi.Request in order to
override the context_type class variable (default: falcon.asgi.Request)

• response_type – Response-like class to use instead of Falcon’s default class (default:
falcon.asgi.Response)

• router (object) – An instance of a custom router to use in lieu of the default engine.
(See also: Custom Routers)

• independent_middleware (bool) – Set to False if response middleware should
not be executed independently of whether or not request middleware raises an excep-
tion (default True). When this option is set to False, a middleware component’s
process_response() method will NOT be called when that same component’s
process_request() (or that of a component higher up in the stack) raises an exception.

• cors_enable (bool) – Set this flag to True to enable a simple CORS policy for all re-
sponses, including support for preflighted requests. An instance of CORSMiddleware can
instead be passed to the middleware argument to customize its behaviour. (default False).
(See also: CORS)

• sink_before_static_route (bool) – Indicates if the sinks should be processed
before (when True) or after (when False) the static routes. This has an effect only if no
route was matched. (default True)

req_options
A set of behavioral options related to incoming requests. (See also: RequestOptions)

resp_options
A set of behavioral options related to outgoing responses. (See also: ResponseOptions)

ws_options
A set of behavioral options related to WebSocket connections. (See also: WebSocketOptions)

router_options
Configuration options for the router. If a custom router is in use, and it does not expose any configurable
options, referencing this attribute will raise an instance of AttributeError.

(See also: CompiledRouterOptions)

106 Chapter 5. Documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

add_error_handler(exception, handler=None)
Register a handler for one or more exception types.

Error handlers may be registered for any exception type, including HTTPError or HTTPStatus. This
feature provides a central location for logging and otherwise handling exceptions raised by responders,
hooks, and middleware components.

A handler can raise an instance of HTTPError or HTTPStatus to communicate information about the
issue to the client. Alternatively, a handler may modify resp directly.

An error handler “matches” a raised exception if the exception is an instance of the corresponding excep-
tion type. If more than one error handler matches the raised exception, the framework will choose the most
specific one, as determined by the method resolution order of the raised exception type. If multiple error
handlers are registered for the same exception class, then the most recently-registered handler is used.

For example, suppose we register error handlers as follows:

app = App()
app.add_error_handler(falcon.HTTPNotFound, custom_handle_not_found)
app.add_error_handler(falcon.HTTPError, custom_handle_http_error)
app.add_error_handler(Exception, custom_handle_uncaught_exception)
app.add_error_handler(falcon.HTTPNotFound, custom_handle_404)

If an instance of falcon.HTTPForbidden is raised, it will be handled by
custom_handle_http_error(). falcon.HTTPError is a superclass of falcon.
HTTPForbidden and a subclass of Exception, so it is the most specific exception type with a
registered handler.

If an instance of falcon.HTTPNotFound is raised, it will be handled by custom_handle_404(),
not by custom_handle_not_found(), because custom_handle_404() was registered more
recently.

Note: By default, the framework installs three handlers, one for HTTPError, one for HTTPStatus, and
one for the standard Exception type, which prevents passing uncaught exceptions to the WSGI server.
These can be overridden by adding a custom error handler method for the exception type in question.

When a generic unhandled exception is raised while handling a WebSocket connection, the default han-
dler will close the connection with the standard close code 1011 (Internal Error). If your ASGI server
does not support this code, the framework will use code 3011 instead; or you can customize it via the
error_close_code property of ws_options.

On the other hand, if an on_websocket() responder raises an instance of HTTPError, the default
error handler will close the WebSocket connection with a framework close code derived by adding 3000
to the HTTP status code (e.g., 3404)

Parameters exception (type or iterable of types) – When handling a request,
whenever an error occurs that is an instance of the specified type(s), the associated handler
will be called. Either a single type or an iterable of types may be specified.

Keyword Arguments handler (callable) – A coroutine function taking the form:

async def func(req, resp, ex, params, ws=None):
pass

In the case of a WebSocket connection, the resp argument will be None, while the ws key-
word argument will receive the WebSocket object representing the connection.

5.4. Framework Reference 107

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#callable

Falcon Documentation, Release 3.0.1

If the handler keyword argument is not provided to add_error_handler(), the handler
will default to exception.handle, where exception is the error type specified above,
and handle is a static method (i.e., decorated with @staticmethod) that accepts the
params just described. For example:

class CustomException(CustomBaseException):

@staticmethod
async def handle(req, resp, ex, params):

TODO: Log the error
Convert to an instance of falcon.HTTPError
raise falcon.HTTPError(falcon.HTTP_792)

Note, however, that if an iterable of exception types is specified instead of a single type, the
handler must be explicitly specified using the handler keyword argument.

add_route(uri_template, resource, **kwargs)
Associate a templatized URI path with a resource.

Falcon routes incoming requests to resources based on a set of URI templates. If the path requested by the
client matches the template for a given route, the request is then passed on to the associated resource for
processing.

Note: If no route matches the request, control then passes to a default responder that simply raises an
instance of HTTPRouteNotFound. By default, this error will be rendered as a 404 response, but this
behavior can be modified by adding a custom error handler (see also this FAQ topic).

On the other hand, if a route is matched but the resource does not implement a responder for
the requested HTTP method, the framework invokes a default responder that raises an instance of
HTTPMethodNotAllowed.

This method delegates to the configured router’s add_route()method. To override the default behavior,
pass a custom router object to the App initializer.

(See also: Routing)

Parameters

• uri_template (str) – A templatized URI. Care must be taken to ensure the template
does not mask any sink patterns, if any are registered.

(See also: add_sink())

Warning: If strip_url_path_trailing_slash is enabled, uri_template
should be provided without a trailing slash.

(See also: How does Falcon handle a trailing slash in the request path?)

• resource (instance) – Object which represents a REST resource. Falcon will pass
GET requests to on_get(), PUT requests to on_put(), etc. If any HTTP methods are
not supported by your resource, simply don’t define the corresponding request handlers,
and Falcon will do the right thing.

Note: When using an async version of the App, all request handlers must be awaitable

108 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

coroutine functions.

Keyword Arguments

• suffix (str) – Optional responder name suffix for this route. If a suffix is pro-
vided, Falcon will map GET requests to on_get_{suffix}(), POST requests to
on_post_{suffix}(), etc. In this way, multiple closely-related routes can be mapped
to the same resource. For example, a single resource class can use suffixed responders to
distinguish requests for a single item vs. a collection of those same items. Another class
might use a suffixed responder to handle a shortlink route in addition to the regular route
for the resource. For example:

class Baz(object):

def on_get_foo(self, req, resp):
pass

def on_get_bar(self, req, resp):
pass

baz = Baz()
app = falcon.App()
app.add_route('/foo', baz, suffix='foo')
app.add_route('/bar', baz, suffix='bar')

• compile (bool) – Optional flag that can be provided when using the default
CompiledRouter to compile the routing logic on this call, since it will otherwise delay
compilation until the first request is routed. See CompiledRouter.add_route()
for further details.

Note: Any additional keyword arguments not defined above are passed through to the underlying router’s
add_route()method. The default router ignores any additional keyword arguments, but custom routers
may take advantage of this feature to receive additional options when setting up routes. Custom routers
MUST accept such arguments using the variadic pattern (**kwargs), and ignore any keyword arguments
that they don’t support.

add_sink(sink, prefix='/')
Register a sink method for the App.

If no route matches a request, but the path in the requested URI matches a sink prefix, Falcon will pass
control to the associated sink, regardless of the HTTP method requested.

Using sinks, you can drain and dynamically handle a large number of routes, when creating static resources
and responders would be impractical. For example, you might use a sink to create a smart proxy that
forwards requests to one or more backend services.

Parameters

• sink (callable) – A callable taking the form func(req, resp, **kwargs).

Note: When using an async version of the App, this must be a coroutine.

• prefix (str) – A regex string, typically starting with ‘/’, which will trigger the sink if it
matches the path portion of the request’s URI. Both strings and precompiled regex objects
may be specified. Characters are matched starting at the beginning of the URI path.

5.4. Framework Reference 109

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Note: Named groups are converted to kwargs and passed to the sink as such.

Warning: If the prefix overlaps a registered route template, the route will take prece-
dence and mask the sink.

(See also: add_route())

Options

class falcon.RequestOptions
Defines a set of configurable request options.

An instance of this class is exposed via falcon.App.req_options and falcon.asgi.App.
req_options for configuring certain Request and falcon.asgi.Request behaviors, respectively.

keep_blank_qs_values
Set to False to ignore query string params that have missing or blank values (default True). For comma-
separated values, this option also determines whether or not empty elements in the parsed list are retained.

Type bool

auto_parse_form_urlencoded
Set to True in order to automatically consume the request stream and merge the results into the re-
quest’s query string params when the request’s content type is application/x-www-form-urlencoded (de-
fault False).

Enabling this option for WSGI apps makes the form parameters accessible via params, get_param(),
etc.

Warning: The auto_parse_form_urlencoded option is not supported for ASGI apps, and is considered
deprecated for WSGI apps as of Falcon 3.0, in favor of accessing URL-encoded forms through media.

See also: How can I access POSTed form params?

Warning: When this option is enabled, the request’s body stream will be left at EOF. The original
data is not retained by the framework.

Note: The character encoding for fields, before percent-encoding non-ASCII bytes, is assumed to be
UTF-8. The special _charset_ field is ignored if present.

Falcon expects form-encoded request bodies to be encoded according to the standard W3C algorithm (see
also http://goo.gl/6rlcux).

auto_parse_qs_csv
Set to True to split query string values on any non-percent-encoded commas (default False).

When False, values containing commas are left as-is. In this mode, list items are taken only from
multiples of the same parameter name within the query string (i.e. t=1,2,3&t=4 becomes ['1,2,
3', '4']).

110 Chapter 5. Documentation

https://docs.python.org/3/library/functions.html#bool
http://goo.gl/6rlcux

Falcon Documentation, Release 3.0.1

When auto_parse_qs_csv is set to True, the query string value is also split on non-percent-encoded com-
mas and these items are added to the final list (i.e. t=1,2,3&t=4,5 becomes ['1', '2', '3',
'4', '5']).

Warning: Enabling this option will cause the framework to misinterpret any JSON values that include
literal (non-percent-encoded) commas. If the query string may include JSON, you can use JSON array
syntax in lieu of CSV as a workaround.

strip_url_path_trailing_slash
Set to True in order to strip the trailing slash, if present, at the end of the URL path (default False).
When this option is enabled, the URL path is normalized by stripping the trailing slash character. This lets
the application define a single route to a resource for a path that may or may not end in a forward slash.
However, this behavior can be problematic in certain cases, such as when working with authentication
schemes that employ URL-based signatures.

default_media_type
The default media-type used to deserialize a request body, when the Content-Type header is miss-
ing or ambiguous. This value is normally set to the media type provided to the falcon.App or
falcon.asgi.App initializer; however, if created independently, this will default to falcon.
DEFAULT_MEDIA_TYPE.

Type str

media_handlers
A dict-like object for configuring the media-types to handle. By default, handlers are provided
for the application/json, application/x-www-form-urlencoded and multipart/
form-data media types.

Type Handlers

class falcon.ResponseOptions
Defines a set of configurable response options.

An instance of this class is exposed via falcon.App.resp_options and falcon.asgi.App.
resp_options for configuring certain Response behaviors.

secure_cookies_by_default
Set to False in development environments to make the secure attribute for all cookies default to False.
This can make testing easier by not requiring HTTPS. Note, however, that this setting can be overridden
via set_cookie()’s secure kwarg.

Type bool

default_media_type
The default Internet media type (RFC 2046) to use when rendering a response, when the Content-Type
header is not set explicitly. This value is normally set to the media type provided when a falcon.App is
initialized; however, if created independently, this will default to falcon.DEFAULT_MEDIA_TYPE..

Type str

media_handlers
A dict-like object for configuring the media-types to handle. By default, handlers are provided
for the application/json, application/x-www-form-urlencoded and multipart/
form-data media types.

Type Handlers

5.4. Framework Reference 111

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

static_media_types
A mapping of dot-prefixed file extensions to Internet media types (RFC 2046). Defaults to mimetypes.
types_map after calling mimetypes.init().

Type dict

class falcon.routing.CompiledRouterOptions
Defines a set of configurable router options.

An instance of this class is exposed via falcon.App.router_options and falcon.asgi.App.
router_options for configuring certain CompiledRouter behaviors.

converters
Represents the collection of named converters that may be referenced in URI template field expressions.
Adding additional converters is simply a matter of mapping an identifier to a converter class:

app.router_options.converters['mc'] = MyConverter

The identifier can then be used to employ the converter within a URI template:

app.add_route('/{some_field:mc}', some_resource)

Converter names may only contain ASCII letters, digits, and underscores, and must start with either a letter
or an underscore.

Warning: Converter instances are shared between requests. Therefore, in threaded deployments, care
must be taken to implement custom converters in a thread-safe manner.

(See also: Field Converters)

5.4.2 Request & Response

Similar to other frameworks, Falcon employs the inversion of control (IoC) pattern to coordinate with app methods
in order to respond to HTTP requests. Resource responders, middleware methods, hooks, etc. receive a reference to
the request and response objects that represent the current in-flight HTTP request. The app can use these objects to
inspect the incoming HTTP request, and to manipulate the outgoing HTTP response.

Falcon uses different types to represent HTTP requests and responses for WSGI (falcon.App) vs. ASGI (falcon.
asgi.App). However, the two interfaces are designed to be as similar as possible to minimize confusion and to
facilitate porting.

(See also: Routing)

WSGI Request & Response

• Request

• Response

Instances of the falcon.Request and falcon.Response classes are passed into WSGI app responders as the
second and third arguments, respectively:

import falcon

(continues on next page)

112 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

(continued from previous page)

class Resource:

def on_get(self, req, resp):
resp.media = {'message': 'Hello world!'}
resp.status = falcon.HTTP_200

-- snip --

app = falcon.App()
app.add_route('/', Resource())

Request

class falcon.Request(env, options=None)
Represents a client’s HTTP request.

Note: Request is not meant to be instantiated directly by responders.

Parameters env (dict) – A WSGI environment dict passed in from the server. See also PEP-3333.

Keyword Arguments options (dict) – Set of global options passed from the App handler.

env
Reference to the WSGI environ dict passed in from the server. (See also PEP-3333.)

Type dict

context
Empty object to hold any data (in its attributes) about the request which is specific to your app (e.g. session
object). Falcon itself will not interact with this attribute after it has been initialized.

Note: New in 2.0: The default context_type (see below) was changed from dict to a bare class; the
preferred way to pass request-specific data is now to set attributes directly on the context object. For
example:

req.context.role = 'trial'
req.context.user = 'guest'

Type object

context_type
Class variable that determines the factory or type to use for initializing the context attribute. By default,
the framework will instantiate bare objects (instances of the bare falcon.Context class). However,
you may override this behavior by creating a custom child class of falcon.Request, and then passing
that new class to falcon.App() by way of the latter’s request_type parameter.

Note: When overriding context_type with a factory function (as opposed to a class), the function is called
like a method of the current Request instance. Therefore the first argument is the Request instance itself

5.4. Framework Reference 113

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

Falcon Documentation, Release 3.0.1

(self).

Type class

scheme
URL scheme used for the request. Either ‘http’ or ‘https’.

Note: If the request was proxied, the scheme may not match what was originally requested by the client.
forwarded_scheme can be used, instead, to handle such cases.

Type str

forwarded_scheme
Original URL scheme requested by the user agent, if the request was proxied. Typical values are ‘http’ or
‘https’.

The following request headers are checked, in order of preference, to determine the forwarded scheme:

• Forwarded

• X-Forwarded-For

If none of these headers are available, or if the Forwarded header is available but does not contain a “proto”
parameter in the first hop, the value of scheme is returned instead.

(See also: RFC 7239, Section 1)

Type str

method
HTTP method requested (e.g., ‘GET’, ‘POST’, etc.)

Type str

host
Host request header field

Type str

forwarded_host
Original host request header as received by the first proxy in front of the application server.

The following request headers are checked, in order of preference, to determine the forwarded scheme:

• Forwarded

• X-Forwarded-Host

If none of the above headers are available, or if the Forwarded header is available but the “host” parameter
is not included in the first hop, the value of host is returned instead.

Note: Reverse proxies are often configured to set the Host header directly to the one that was originally
requested by the user agent; in that case, using host is sufficient.

(See also: RFC 7239, Section 4)

Type str

114 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc7239#section-1
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc7239#section-4
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

port
Port used for the request. If the Host header is present in the request, but does not specify a port, the default
one for the given schema is returned (80 for HTTP and 443 for HTTPS). If the request does not include a
Host header, the listening port for the WSGI server is returned instead.

Type int

netloc
Returns the “host:port” portion of the request URL. The port may be omitted if it is the default one for the
URL’s schema (80 for HTTP and 443 for HTTPS).

Type str

subdomain
Leftmost (i.e., most specific) subdomain from the hostname. If only a single domain name is given,
subdomain will be None.

Note: If the hostname in the request is an IP address, the value for subdomain is undefined.

Type str

root_path
The initial portion of the request URI’s path that corresponds to the application object, so that the applica-
tion knows its virtual “location”. This may be an empty string, if the application corresponds to the “root”
of the server.

(Corresponds to the “SCRIPT_NAME” environ variable defined by PEP-3333.)

Type str

app
Deprecated alias for root_path.

Type str

uri
The fully-qualified URI for the request.

Type str

url
Alias for uri.

Type str

forwarded_uri
Original URI for proxied requests. Uses forwarded_scheme and forwarded_host in order to
reconstruct the original URI requested by the user agent.

Type str

relative_uri
The path and query string portion of the request URI, omitting the scheme and host.

Type str

prefix
The prefix of the request URI, including scheme, host, and WSGI app (if any).

Type str

5.4. Framework Reference 115

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

forwarded_prefix
The prefix of the original URI for proxied requests. Uses forwarded_scheme and
forwarded_host in order to reconstruct the original URI.

Type str

path
Path portion of the request URI (not including query string).

Warning: If this attribute is to be used by the app for any upstream requests, any non URL-safe
characters in the path must be URL encoded back before making the request.

Note: req.path may be set to a new value by a process_request() middleware method in order
to influence routing. If the original request path was URL encoded, it will be decoded before being returned
by this attribute.

Type str

query_string
Query string portion of the request URI, without the preceding ‘?’ character.

Type str

uri_template
The template for the route that was matched for this request. May be None if the request has not yet been
routed, as would be the case for process_request() middleware methods. May also be None if
your app uses a custom routing engine and the engine does not provide the URI template when resolving
a route.

Type str

remote_addr
IP address of the closest client or proxy to the WSGI server.

This property is determined by the value of REMOTE_ADDR in the WSGI environment dict. Since this
address is not derived from an HTTP header, clients and proxies can not forge it.

Note: If your application is behind one or more reverse proxies, you can use access_route to retrieve
the real IP address of the client.

Type str

access_route
IP address of the original client, as well as any known addresses of proxies fronting the WSGI server.

The following request headers are checked, in order of preference, to determine the addresses:

• Forwarded

• X-Forwarded-For

• X-Real-IP

116 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

If none of these headers are available, the value of remote_addr is used instead.

Note: Per RFC 7239, the access route may contain “unknown” and obfuscated identifiers, in addition to
IPv4 and IPv6 addresses

Warning: Headers can be forged by any client or proxy. Use this property with caution and validate
all values before using them. Do not rely on the access route to authorize requests.

Type list

forwarded
Value of the Forwarded header, as a parsed list of falcon.Forwarded objects, or None if the header
is missing. If the header value is malformed, Falcon will make a best effort to parse what it can.

(See also: RFC 7239, Section 4)

Type list

date
Value of the Date header, converted to a datetime instance. The header value is assumed to conform to
RFC 1123.

Type datetime

auth
Value of the Authorization header, or None if the header is missing.

Type str

user_agent
Value of the User-Agent header, or None if the header is missing.

Type str

referer
Value of the Referer header, or None if the header is missing.

Type str

accept
Value of the Accept header, or '*/*' if the header is missing.

Type str

client_accepts_json
True if the Accept header indicates that the client is willing to receive JSON, otherwise False.

Type bool

client_accepts_msgpack
True if the Accept header indicates that the client is willing to receive MessagePack, otherwise False.

Type bool

client_accepts_xml
True if the Accept header indicates that the client is willing to receive XML, otherwise False.

Type bool

5.4. Framework Reference 117

https://tools.ietf.org/html/rfc7239
https://docs.python.org/3/library/stdtypes.html#list
https://tools.ietf.org/html/rfc7239#section-4
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

cookies
A dict of name/value cookie pairs. The returned object should be treated as read-only to avoid unintended
side-effects. If a cookie appears more than once in the request, only the first value encountered will be
made available here.

See also: get_cookie_values()

Type dict

content_type
Value of the Content-Type header, or None if the header is missing.

Type str

content_length
Value of the Content-Length header converted to an int, or None if the header is missing.

Type int

stream
File-like input object for reading the body of the request, if any. This object provides direct access to
the server’s data stream and is non-seekable. In order to avoid unintended side effects, and to provide
maximum flexibility to the application, Falcon itself does not buffer or spool the data in any way.

Since this object is provided by the WSGI server itself, rather than by Falcon, it may behave differently
depending on how you host your app. For example, attempting to read more bytes than are expected (as
determined by the Content-Length header) may or may not block indefinitely. It’s a good idea to test your
WSGI server to find out how it behaves.

This can be particulary problematic when a request body is expected, but none is given. In this case, the
following call blocks under certain WSGI servers:

Blocks if Content-Length is 0
data = req.stream.read()

The workaround is fairly straightforward, if verbose:

If Content-Length happens to be 0, or the header is
missing altogether, this will not block.
data = req.stream.read(req.content_length or 0)

Alternatively, when passing the stream directly to a consumer, it may be necessary to branch off the value
of the Content-Length header:

if req.content_length:
doc = json.load(req.stream)

For a slight performance cost, you may instead wish to use bounded_stream, which wraps the native
WSGI input object to normalize its behavior.

Note: If an HTML form is POSTed to the API using the application/x-www-form-urlencoded media type,
and the auto_parse_form_urlencoded option is set, the framework will consume stream in order
to parse the parameters and merge them into the query string parameters. In this case, the stream will be
left at EOF.

bounded_stream
File-like wrapper around stream to normalize certain differences between the native input objects em-
ployed by different WSGI servers. In particular, bounded_stream is aware of the expected Content-Length

118 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

of the body, and will never block on out-of-bounds reads, assuming the client does not stall while trans-
mitting the data to the server.

For example, the following will not block when Content-Length is 0 or the header is missing altogether:

data = req.bounded_stream.read()

This is also safe:

doc = json.load(req.bounded_stream)

media
Property that acts as an alias for get_media(). This alias provides backwards-compatibility for apps
that were built for versions of the framework prior to 3.0:

Equivalent to: deserialized_media = req.get_media()
deserialized_media = req.media

Type object

expect
Value of the Expect header, or None if the header is missing.

Type str

range
A 2-member tuple parsed from the value of the Range header.

The two members correspond to the first and last byte positions of the requested resource, inclusive. Neg-
ative indices indicate offset from the end of the resource, where -1 is the last byte, -2 is the second-to-last
byte, and so forth.

Only continuous ranges are supported (e.g., “bytes=0-0,-1” would result in an HTTPBadRequest exception
when the attribute is accessed.)

Type tuple of int

range_unit
Unit of the range parsed from the value of the Range header, or None if the header is missing

Type str

if_match
Value of the If-Match header, as a parsed list of falcon.ETag objects or None if the header is missing
or its value is blank.

This property provides a list of all entity-tags in the header, both strong and weak, in the same order
as listed in the header.

(See also: RFC 7232, Section 3.1)

Type list

if_none_match
Value of the If-None-Match header, as a parsed list of falcon.ETag objects or None if the header is
missing or its value is blank.

This property provides a list of all entity-tags in the header, both strong and weak, in the same order
as listed in the header.

(See also: RFC 7232, Section 3.2)

5.4. Framework Reference 119

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc7232#section-3.1
https://docs.python.org/3/library/stdtypes.html#list
https://tools.ietf.org/html/rfc7232#section-3.2

Falcon Documentation, Release 3.0.1

Type list

if_modified_since
Value of the If-Modified-Since header, or None if the header is missing.

Type datetime

if_unmodified_since
Value of the If-Unmodified-Since header, or None if the header is missing.

Type datetime

if_range
Value of the If-Range header, or None if the header is missing.

Type str

headers
Raw HTTP headers from the request with canonical dash-separated names. Parsing all the headers to
create this dict is done the first time this attribute is accessed, and the returned object should be treated
as read-only. Note that this parsing can be costly, so unless you need all the headers in this format, you
should instead use the get_header() method or one of the convenience attributes to get a value for a
specific header.

Type dict

params
The mapping of request query parameter names to their values. Where the parameter appears multiple
times in the query string, the value mapped to that parameter key will be a list of all the values in the order
seen.

Type dict

options
Set of global options passed from the App handler.

Type dict

client_accepts(media_type)
Determine whether or not the client accepts a given media type.

Parameters media_type (str) – An Internet media type to check.

Returns True if the client has indicated in the Accept header that it accepts the specified media
type. Otherwise, returns False.

Return type bool

client_prefers(media_types)
Return the client’s preferred media type, given several choices.

Parameters media_types (iterable of str) – One or more Internet media types from
which to choose the client’s preferred type. This value must be an iterable collection of
strings.

Returns The client’s preferred media type, based on the Accept header. Returns None if the
client does not accept any of the given types.

Return type str

get_cookie_values(name)
Return all values provided in the Cookie header for the named cookie.

(See also: Getting Cookies)

120 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Parameters name (str) – Cookie name, case-sensitive.

Returns Ordered list of all values specified in the Cookie header for the named cookie, or
None if the cookie was not included in the request. If the cookie is specified more than
once in the header, the returned list of values will preserve the ordering of the individual
cookie-pair’s in the header.

Return type list

get_header(name, required=False, default=None)
Retrieve the raw string value for the given header.

Parameters name (str) – Header name, case-insensitive (e.g., ‘Content-Type’)

Keyword Arguments

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
gracefully when the header is not found (default False).

• default (any) – Value to return if the header is not found (default None).

Returns The value of the specified header if it exists, or the default value if the header is not
found and is not required.

Return type str

Raises HTTPBadRequest – The header was not found in the request, but it was required.

get_header_as_datetime(header, required=False, obs_date=False)
Return an HTTP header with HTTP-Date values as a datetime.

Parameters name (str) – Header name, case-insensitive (e.g., ‘Date’)

Keyword Arguments

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
gracefully when the header is not found (default False).

• obs_date (bool) – Support obs-date formats according to RFC 7231, e.g.: “Sunday,
06-Nov-94 08:49:37 GMT” (default False).

Returns The value of the specified header if it exists, or None if the header is not found and is
not required.

Return type datetime

Raises

• HTTPBadRequest – The header was not found in the request, but it was required.

• HttpInvalidHeader – The header contained a malformed/invalid value.

get_media(default_when_empty=<object object>)
Return a deserialized form of the request stream.

The first time this method is called, the request stream will be deserialized using the Content-Type header
as well as the media-type handlers configured via falcon.RequestOptions. The result will be
cached and returned in subsequent calls:

deserialized_media = req.get_media()

If the matched media handler raises an error while attempting to deserialize the request body, the exception
will propagate up to the caller.

See also Media for more information regarding media handling.

5.4. Framework Reference 121

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

Note: When get_media is called on a request with an empty body, Falcon will let the media handler
try to deserialize the body and will return the value returned by the handler or propagate the exception
raised by it. To instead return a different value in case of an exception by the handler, specify the argument
default_when_empty.

Warning: This operation will consume the request stream the first time it’s called and cache the
results. Follow-up calls will just retrieve a cached version of the object.

Parameters default_when_empty – Fallback value to return when there is no body in the
request and the media handler raises an error (like in the case of the default JSON media
handler). By default, Falcon uses the value returned by the media handler or propagates the
raised exception, if any. This value is not cached, and will be used only for the current call.

Returns The deserialized media representation.

Return type media (object)

get_param(name, required=False, store=None, default=None)
Return the raw value of a query string parameter as a string.

Note: If an HTML form is POSTed to the API using the application/x-www-form-urlencoded media
type, Falcon can automatically parse the parameters from the request body and merge them into the query
string parameters. To enable this functionality, set auto_parse_form_urlencoded to True via
App.req_options.

Note, however, that the auto_parse_form_urlencoded option is considered deprecated as of Fal-
con 3.0 in favor of accessing the URL-encoded form via media, and it may be removed in a future release.

See also: How can I access POSTed form params?

Note: Similar to the way multiple keys in form data are handled, if a query parameter is included in
the query string multiple times, only one of those values will be returned, and it is undefined which one.
This caveat also applies when auto_parse_qs_csv is enabled and the given parameter is assigned to
a comma-separated list of values (e.g., foo=a,b,c).

When multiple values are expected for a parameter, get_param_as_list() can be used to retrieve
all of them at once.

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘sort’).

Keyword Arguments

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found (default False).

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is present.

• default (any) – If the param is not found returns the given value instead of None

Returns The value of the param as a string, or None if param is not found and is not required.

Return type str

122 Chapter 5. Documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Raises HTTPBadRequest – A required param is missing from the request.

get_param_as_bool(name, required=False, store=None, blank_as_true=True, default=None)
Return the value of a query string parameter as a boolean.

This method treats valueless parameters as flags. By default, if no value is provided for the parameter in
the query string, True is assumed and returned. If the parameter is missing altogether, None is returned
as with other get_param_*() methods, which can be easily treated as falsy by the caller as needed.

The following boolean strings are supported:

TRUE_STRINGS = ('true', 'True', 't', 'yes', 'y', '1', 'on')
FALSE_STRINGS = ('false', 'False', 'f', 'no', 'n', '0', 'off')

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘detailed’).

Keyword Arguments

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found or is not a recognized boolean string (default
False).

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is found (default None).

• blank_as_true (bool) – Valueless query string parameters are treated as flags, result-
ing in True being returned when such a parameter is present, and False otherwise. To
require the client to explicitly opt-in to a truthy value, pass blank_as_true=False to
return False when a value is not specified in the query string.

• default (any) – If the param is not found, return this value instead of None.

Returns The value of the param if it is found and can be converted to a bool. If the param is
not found, returns None unless required is True.

Return type bool

Raises HTTPBadRequest – A required param is missing from the request, or can not be con-
verted to a bool.

get_param_as_date(name, format_string='%Y-%m-%d', required=False, store=None, de-
fault=None)

Return the value of a query string parameter as a date.

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘ids’).

Keyword Arguments

• format_string (str) – String used to parse the param value into a date. Any format
recognized by strptime() is supported (default "%Y-%m-%d").

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found (default False).

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is found (default None).

• default (any) – If the param is not found returns the given value instead of None

Returns The value of the param if it is found and can be converted to a date according to the
supplied format string. If the param is not found, returns None unless required is True.

Return type datetime.date

5.4. Framework Reference 123

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/datetime.html#datetime.date

Falcon Documentation, Release 3.0.1

Raises HTTPBadRequest – A required param is missing from the request, or the value could
not be converted to a date.

get_param_as_datetime(name, format_string='%Y-%m-%dT%H:%M:%SZ', required=False,
store=None, default=None)

Return the value of a query string parameter as a datetime.

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘ids’).

Keyword Arguments

• format_string (str) – String used to parse the param value into a datetime. Any
format recognized by strptime() is supported (default '%Y-%m-%dT%H:%M:%SZ').

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found (default False).

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is found (default None).

• default (any) – If the param is not found returns the given value instead of None

Returns The value of the param if it is found and can be converted to a datetime according to
the supplied format string. If the param is not found, returns None unless required is True.

Return type datetime.datetime

Raises HTTPBadRequest – A required param is missing from the request, or the value could
not be converted to a datetime.

get_param_as_float(name, required=False, min_value=None, max_value=None, store=None, de-
fault=None)

Return the value of a query string parameter as an float.

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘limit’).

Keyword Arguments

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found or is not an float (default False).

• min_value (float) – Set to the minimum value allowed for this param. If the param
is found and it is less than min_value, an HTTPError is raised.

• max_value (float) – Set to the maximum value allowed for this param. If the param
is found and its value is greater than max_value, an HTTPError is raised.

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is found (default None).

• default (any) – If the param is not found returns the given value instead of None

Returns The value of the param if it is found and can be converted to an float. If the param
is not found, returns None, unless required is True.

Return type float

Raises

HTTPBadRequest: The param was not found in the request, even though it was required to be
there, or it was found but could not be converted to an float. Also raised if the param’s value
falls outside the given interval, i.e., the value must be in the interval: min_value <= value <=
max_value to avoid triggering an error.

124 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/functions.html#float

Falcon Documentation, Release 3.0.1

get_param_as_int(name, required=False, min_value=None, max_value=None, store=None, de-
fault=None)

Return the value of a query string parameter as an int.

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘limit’).

Keyword Arguments

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found or is not an integer (default False).

• min_value (int) – Set to the minimum value allowed for this param. If the param is
found and it is less than min_value, an HTTPError is raised.

• max_value (int) – Set to the maximum value allowed for this param. If the param is
found and its value is greater than max_value, an HTTPError is raised.

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is found (default None).

• default (any) – If the param is not found returns the given value instead of None

Returns The value of the param if it is found and can be converted to an int. If the param is
not found, returns None, unless required is True.

Return type int

Raises

HTTPBadRequest: The param was not found in the request, even though it was required to be
there, or it was found but could not be converted to an int. Also raised if the param’s value
falls outside the given interval, i.e., the value must be in the interval: min_value <= value <=
max_value to avoid triggering an error.

get_param_as_json(name, required=False, store=None, default=None)
Return the decoded JSON value of a query string parameter.

Given a JSON value, decode it to an appropriate Python type, (e.g., dict, list, str, int, bool, etc.)

Warning: If the auto_parse_qs_csv option is set to True (default False), the framework will
misinterpret any JSON values that include literal (non-percent-encoded) commas. If the query string
may include JSON, you can use JSON array syntax in lieu of CSV as a workaround.

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘payload’).

Keyword Arguments

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found (default False).

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is found (default None).

• default (any) – If the param is not found returns the given value instead of None

Returns The value of the param if it is found. Otherwise, returns None unless required is True.

Return type dict

Raises HTTPBadRequest – A required param is missing from the request, or the value could
not be parsed as JSON.

5.4. Framework Reference 125

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

get_param_as_list(name, transform=None, required=False, store=None, default=None)
Return the value of a query string parameter as a list.

List items must be comma-separated or must be provided as multiple instances of the same param in the
query string ala application/x-www-form-urlencoded.

Note: To enable the interpretation of comma-separated parameter values, the auto_parse_qs_csv
option must be set to True (default False).

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘ids’).

Keyword Arguments

• transform (callable) – An optional transform function that takes as input each el-
ement in the list as a str and outputs a transformed element for inclusion in the list that
will be returned. For example, passing int will transform list items into numbers.

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found (default False).

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is found (default None).

• default (any) – If the param is not found returns the given value instead of None

Returns

The value of the param if it is found. Otherwise, returns None unless required is True.

Empty list elements will be included by default, but this behavior can be configured by setting
the keep_blank_qs_values option. For example, by default the following query strings
would both result in ['1', '', '3']:

things=1&things=&things=3
things=1,,3

Note, however, that for the second example string above to be interpreted as a list, the
auto_parse_qs_csv option must be set to True.

Return type list

Raises HTTPBadRequest – A required param is missing from the request, or a transform
function raised an instance of ValueError.

get_param_as_uuid(name, required=False, store=None, default=None)
Return the value of a query string parameter as an UUID.

The value to convert must conform to the standard UUID string representation per RFC 4122. For example,
the following strings are all valid:

Lowercase
'64be949b-3433-4d36-a4a8-9f19d352fee8'

Uppercase
'BE71ECAA-F719-4D42-87FD-32613C2EEB60'

Mixed
'81c8155C-D6de-443B-9495-39Fa8FB239b5'

126 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/stdtypes.html#list

Falcon Documentation, Release 3.0.1

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘id’).

Keyword Arguments

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found or is not a UUID (default False).

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is found (default None).

• default (any) – If the param is not found returns the given value instead of None

Returns The value of the param if it is found and can be converted to a UUID. If the param is
not found, returns default (default None), unless required is True.

Return type UUID

Raises

HTTPBadRequest: The param was not found in the request, even though it was required to be
there, or it was found but could not be converted to a UUID.

has_param(name)
Determine whether or not the query string parameter already exists.

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘sort’).

Returns True if param is found, or False if param is not found.

Return type bool

log_error(message)
Write an error message to the server’s log.

Prepends timestamp and request info to message, and writes the result out to the WSGI server’s error
stream (wsgi.error).

Parameters message (str) – Description of the problem.

class falcon.Forwarded
Represents a parsed Forwarded header.

(See also: RFC 7239, Section 4)

src
The value of the “for” parameter, or None if the parameter is absent. Identifies the node making the
request to the proxy.

Type str

dest
The value of the “by” parameter, or None if the parameter is absent. Identifies the client-facing interface
of the proxy.

Type str

host
The value of the “host” parameter, or None if the parameter is absent. Provides the host request header
field as received by the proxy.

Type str

scheme
The value of the “proto” parameter, or None if the parameter is absent. Indicates the protocol that was
used to make the request to the proxy.

5.4. Framework Reference 127

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc7239#section-4
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Type str

class falcon.stream.BoundedStream(stream, stream_len)
Wrap wsgi.input streams to make them more robust.

socket._fileobject and io.BufferedReader are sometimes used to implement wsgi.input. How-
ever, app developers are often burned by the fact that the read() method for these objects block indefinitely if
either no size is passed, or a size greater than the request’s content length is passed to the method.

This class normalizes wsgi.input behavior between WSGI servers by implementing non-blocking behavior for
the cases mentioned above. The caller is not allowed to read more than the number of bytes specified by the
Content-Length header in the request.

Parameters

• stream – Instance of socket._fileobject from environ['wsgi.input']

• stream_len – Expected content length of the stream.

eof
True if there is no more data to read from the stream, otherwise False.

Type bool

is_exhausted
Deprecated alias for eof.

Type bool

exhaust(chunk_size=65536)
Exhaust the stream.

This consumes all the data left until the limit is reached.

Parameters chunk_size (int) – The size for a chunk (default: 64 KB). It will read the chunk
until the stream is exhausted.

next()
Implement next(self).

read(size=None)
Read from the stream.

Parameters size (int) – Maximum number of bytes/characters to read. Defaults to reading
until EOF.

Returns Data read from the stream.

Return type bytes

readable()
Return True always.

readline(limit=None)
Read a line from the stream.

Parameters limit (int) – Maximum number of bytes/characters to read. Defaults to reading
until EOF.

Returns Data read from the stream.

Return type bytes

readlines(hint=None)
Read lines from the stream.

128 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes

Falcon Documentation, Release 3.0.1

Parameters hint (int) – Maximum number of bytes/characters to read. Defaults to reading
until EOF.

Returns Data read from the stream.

Return type bytes

seekable()
Return False always.

writable()
Return False always.

write(data)
Raise IOError always; writing is not supported.

Response

class falcon.Response(options=None)
Represents an HTTP response to a client request.

Note: Response is not meant to be instantiated directly by responders.

Keyword Arguments options (dict) – Set of global options passed from the App handler.

status
HTTP status code or line (e.g., '200 OK'). This may be set to a member of http.HTTPStatus, an
HTTP status line string or byte string (e.g., '200 OK'), or an int.

Note: The Falcon framework itself provides a number of constants for common status codes. They all
start with the HTTP_ prefix, as in: falcon.HTTP_204. (See also: Status Codes.)

media
A serializable object supported by the media handlers configured via falcon.RequestOptions.

Note: See also Media for more information regarding media handling.

Type object

text
String representing response content.

Note: Falcon will encode the given text as UTF-8 in the response. If the content is already a byte string,
use the data attribute instead (it’s faster).

Type str

body
Deprecated alias for text. Will be removed in a future Falcon version.

5.4. Framework Reference 129

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/http.html#http.HTTPStatus
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Type str

data
Byte string representing response content.

Use this attribute in lieu of text when your content is already a byte string (of type bytes). See also the
note below.

Warning: Always use the text attribute for text, or encode it first to bytes when using the data
attribute, to ensure Unicode characters are properly encoded in the HTTP response.

Type bytes

stream
Either a file-like object with a read() method that takes an optional size argument and returns a block of
bytes, or an iterable object, representing response content, and yielding blocks as byte strings. Falcon will
use wsgi.file_wrapper, if provided by the WSGI server, in order to efficiently serve file-like objects.

Note: If the stream is set to an iterable object that requires resource cleanup, it can implement a close()
method to do so. The close() method will be called upon completion of the request.

context
Empty object to hold any data (in its attributes) about the response which is specific to your app (e.g.
session object). Falcon itself will not interact with this attribute after it has been initialized.

Note: New in 2.0: The default context_type (see below) was changed from dict to a bare class; the
preferred way to pass response-specific data is now to set attributes directly on the context object. For
example:

resp.context.cache_strategy = 'lru'

Type object

context_type
Class variable that determines the factory or type to use for initializing the context attribute. By default, the
framework will instantiate bare objects (instances of the bare falcon.Context class). However, you
may override this behavior by creating a custom child class of falcon.Response, and then passing
that new class to falcon.App() by way of the latter’s response_type parameter.

Note: When overriding context_type with a factory function (as opposed to a class), the function is called
like a method of the current Response instance. Therefore the first argument is the Response instance itself
(self).

Type class

options
Set of global options passed from the App handler.

Type dict

130 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

headers
Copy of all headers set for the response, sans cookies. Note that a new copy is created and returned each
time this property is referenced.

Type dict

complete
Set to True from within a middleware method to signal to the framework that request processing should
be short-circuited (see also Middleware).

Type bool

property accept_ranges
Set the Accept-Ranges header.

The Accept-Ranges header field indicates to the client which range units are supported (e.g. “bytes”) for
the target resource.

If range requests are not supported for the target resource, the header may be set to “none” to advise the
client not to attempt any such requests.

Note: “none” is the literal string, not Python’s built-in None type.

append_header(name, value)
Set or append a header for this response.

If the header already exists, the new value will normally be appended to it, delimited by a comma. The
notable exception to this rule is Set-Cookie, in which case a separate header line for each value will be
included in the response.

Note: While this method can be used to efficiently append raw Set-Cookie headers to the response, you
may find set_cookie() to be more convenient.

Parameters

• name (str) – Header name (case-insensitive). The name may contain only US-ASCII
characters.

• value (str) – Value for the header. As with the header’s name, the value may contain
only US-ASCII characters.

append_link(target, rel, title=None, title_star=None, anchor=None, hreflang=None,
type_hint=None, crossorigin=None)

Append a link header to the response.

(See also: RFC 5988, Section 1)

Note: Calling this method repeatedly will cause each link to be appended to the Link header value,
separated by commas.

Note: So-called “link-extension” elements, as defined by RFC 5988, are not yet supported. See also Issue
#288.

Parameters

5.4. Framework Reference 131

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc5988#section-1

Falcon Documentation, Release 3.0.1

• target (str) – Target IRI for the resource identified by the link. Will be converted to a
URI, if necessary, per RFC 3987, Section 3.1.

• rel (str) – Relation type of the link, such as “next” or “bookmark”.

(See also: http://www.iana.org/assignments/link-relations/link-relations.xhtml)

Keyword Arguments

• title (str) – Human-readable label for the destination of the link (default None). If
the title includes non-ASCII characters, you will need to use title_star instead, or provide
both a US-ASCII version using title and a Unicode version using title_star.

• title_star (tuple of str) – Localized title describing the destination of the link
(default None). The value must be a two-member tuple in the form of (language-tag, text),
where language-tag is a standard language identifier as defined in RFC 5646, Section 2.1,
and text is a Unicode string.

Note: language-tag may be an empty string, in which case the client will assume the
language from the general context of the current request.

Note: text will always be encoded as UTF-8.

• anchor (str) – Override the context IRI with a different URI (default None). By default,
the context IRI for the link is simply the IRI of the requested resource. The value provided
may be a relative URI.

• hreflang (str or iterable) – Either a single language-tag, or a list or tuple
of such tags to provide a hint to the client as to the language of the result of following the
link. A list of tags may be given in order to indicate to the client that the target resource is
available in multiple languages.

• type_hint (str) – Provides a hint as to the media type of the result of dereferencing
the link (default None). As noted in RFC 5988, this is only a hint and does not override
the Content-Type header returned when the link is followed.

• crossorigin (str) – Determines how cross origin requests are handled. Can take
values ‘anonymous’ or ‘use-credentials’ or None. (See: https://www.w3.org/TR/html50/
infrastructure.html#cors-settings-attribute)

property cache_control
Set the Cache-Control header.

Used to set a list of cache directives to use as the value of the Cache-Control header. The list will be joined
with “, ” to produce the value for the header.

property content_length
Set the Content-Length header.

This property can be used for responding to HEAD requests when you aren’t actually providing the re-
sponse body, or when streaming the response. If either the text property or the data property is set on the
response, the framework will force Content-Length to be the length of the given text bytes. Therefore, it
is only necessary to manually set the content length when those properties are not used.

Note: In cases where the response content is a stream (readable file-like object), Falcon will not supply a
Content-Length header to the server unless content_length is explicitly set. Consequently, the server may

132 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc3987#section-3.1.
https://docs.python.org/3/library/stdtypes.html#str
http://www.iana.org/assignments/link-relations/link-relations.xhtml
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc5646#section-2.1
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://www.w3.org/TR/html50/infrastructure.html#cors-settings-attribute
https://www.w3.org/TR/html50/infrastructure.html#cors-settings-attribute

Falcon Documentation, Release 3.0.1

choose to use chunked encoding in this case.

property content_location
Set the Content-Location header.

This value will be URI encoded per RFC 3986. If the value that is being set is already URI encoded it
should be decoded first or the header should be set manually using the set_header method.

property content_range
A tuple to use in constructing a value for the Content-Range header.

The tuple has the form (start, end, length, [unit]), where start and end designate the range (inclusive), and
length is the total length, or ‘*’ if unknown. You may pass int’s for these numbers (no need to convert to
str beforehand). The optional value unit describes the range unit and defaults to ‘bytes’

Note: You only need to use the alternate form, ‘bytes */1234’, for responses that use the status ‘416
Range Not Satisfiable’. In this case, raising falcon.HTTPRangeNotSatisfiable will do the right
thing.

(See also: RFC 7233, Section 4.2)

property content_type
Sets the Content-Type header.

The falcon module provides a number of constants for common media types, including falcon.
MEDIA_JSON, falcon.MEDIA_MSGPACK, falcon.MEDIA_YAML, falcon.MEDIA_XML,
falcon.MEDIA_HTML, falcon.MEDIA_JS, falcon.MEDIA_TEXT, falcon.MEDIA_JPEG,
falcon.MEDIA_PNG, and falcon.MEDIA_GIF.

delete_header(name)
Delete a header that was previously set for this response.

If the header was not previously set, nothing is done (no error is raised). Otherwise, all values set for the
header will be removed from the response.

Note that calling this method is equivalent to setting the corresponding header property (when said property
is available) to None. For example:

resp.etag = None

Warning: This method cannot be used with the Set-Cookie header. Instead, use unset_cookie()
to remove a cookie and ensure that the user agent expires its own copy of the data as well.

Parameters name (str) – Header name (case-insensitive). The name may contain only US-
ASCII characters.

Raises ValueError – name cannot be 'Set-Cookie'.

property downloadable_as
Set the Content-Disposition header using the given filename.

The value will be used for the filename directive. For example, given 'report.pdf', the Content-
Disposition header would be set to: 'attachment; filename="report.pdf"'.

As per RFC 6266 recommendations, non-ASCII filenames will be encoded using the filename* direc-
tive, whereas filename will contain the US ASCII fallback.

5.4. Framework Reference 133

https://tools.ietf.org/html/rfc7233#section-4.2
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://tools.ietf.org/html/rfc6266#appendix-D

Falcon Documentation, Release 3.0.1

property etag
Set the ETag header.

The ETag header will be wrapped with double quotes "value" in case the user didn’t pass it.

property expires
Set the Expires header. Set to a datetime (UTC) instance.

Note: Falcon will format the datetime as an HTTP date string.

get_header(name, default=None)
Retrieve the raw string value for the given header.

Normally, when a header has multiple values, they will be returned as a single, comma-delimited string.
However, the Set-Cookie header does not support this format, and so attempting to retrieve it will raise an
error.

Parameters name (str) – Header name, case-insensitive. Must be of type str or
StringType, and only character values 0x00 through 0xFF may be used on platforms
that use wide characters.

Keyword Arguments default – Value to return if the header is not found (default None).

Raises ValueError – The value of the ‘Set-Cookie’ header(s) was requested.

Returns The value of the specified header if set, or the default value if not set.

Return type str

property last_modified
Set the Last-Modified header. Set to a datetime (UTC) instance.

Note: Falcon will format the datetime as an HTTP date string.

property location
Set the Location header.

This value will be URI encoded per RFC 3986. If the value that is being set is already URI encoded it
should be decoded first or the header should be set manually using the set_header method.

render_body()
Get the raw bytestring content for the response body.

This method returns the raw data for the HTTP response body, taking into account the text, data, and
media attributes.

Note: This method ignores stream; the caller must check and handle that attribute directly.

Returns The UTF-8 encoded value of the text attribute, if set. Otherwise, the value of the data
attribute if set, or finally the serialized value of the media attribute. If none of these attributes
are set, None is returned.

Return type bytes

property retry_after
Set the Retry-After header.

134 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

Falcon Documentation, Release 3.0.1

The expected value is an integral number of seconds to use as the value for the header. The HTTP-date
syntax is not supported.

set_cookie(name, value, expires=None, max_age=None, domain=None, path=None, secure=None,
http_only=True, same_site=None)

Set a response cookie.

Note: This method can be called multiple times to add one or more cookies to the response.

See also:

To learn more about setting cookies, see Setting Cookies. The parameters listed below correspond to those
defined in RFC 6265.

Parameters

• name (str) – Cookie name

• value (str) – Cookie value

Keyword Arguments

• expires (datetime) – Specifies when the cookie should expire. By default, cookies
expire when the user agent exits.

(See also: RFC 6265, Section 4.1.2.1)

• max_age (int) – Defines the lifetime of the cookie in seconds. By default, cookies
expire when the user agent exits. If both max_age and expires are set, the latter is ignored
by the user agent.

Note: Coercion to int is attempted if provided with float or str.

(See also: RFC 6265, Section 4.1.2.2)

• domain (str) – Restricts the cookie to a specific domain and any subdomains of that
domain. By default, the user agent will return the cookie only to the origin server. When
overriding this default behavior, the specified domain must include the origin server. Oth-
erwise, the user agent will reject the cookie.

Note: Cookies do not provide isolation by port, so the domain should not provide one.
(See also: RFC 6265, Section 8.5)

(See also: RFC 6265, Section 4.1.2.3)

• path (str) – Scopes the cookie to the given path plus any subdirectories under that path
(the “/” character is interpreted as a directory separator). If the cookie does not specify a
path, the user agent defaults to the path component of the requested URI.

Warning: User agent interfaces do not always isolate cookies by path, and so this
should not be considered an effective security measure.

(See also: RFC 6265, Section 4.1.2.4)

5.4. Framework Reference 135

http://tools.ietf.org/html/rfc6265
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#module-datetime
https://tools.ietf.org/html/rfc6265#section-4.1.2.1
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc6265#section-4.1.2.2
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc6265#section-8.5
https://tools.ietf.org/html/rfc6265#section-4.1.2.3
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc6265#section-4.1.2.4

Falcon Documentation, Release 3.0.1

• secure (bool) – Direct the client to only return the cookie in subsequent requests if they
are made over HTTPS (default: True). This prevents attackers from reading sensitive
cookie data.

Note: The default value for this argument is normally True, but can be modified by
setting secure_cookies_by_default via App.resp_options.

Warning: For the secure cookie attribute to be effective, your application will need
to enforce HTTPS.

(See also: RFC 6265, Section 4.1.2.5)

• http_only (bool) – The HttpOnly attribute limits the scope of the cookie to HTTP
requests. In particular, the attribute instructs the user agent to omit the cookie when pro-
viding access to cookies via “non-HTTP” APIs. This is intended to mitigate some forms
of cross-site scripting. (default: True)

Note: HttpOnly cookies are not visible to javascript scripts in the browser. They are
automatically sent to the server on javascript XMLHttpRequest or Fetch requests.

(See also: RFC 6265, Section 4.1.2.6)

• same_site (str) – Helps protect against CSRF attacks by restricting when a cookie
will be attached to the request by the user agent. When set to 'Strict', the cookie
will only be sent along with “same-site” requests. If the value is 'Lax', the cookie will
be sent with same-site requests, and with “cross-site” top-level navigations. If the value
is 'None', the cookie will be sent with same-site and cross-site requests. Finally, when
this attribute is not set on the cookie, the attribute will be treated as if it had been set to
'None'.

(See also: Same-Site RFC Draft)

Raises

• KeyError – name is not a valid cookie name.

• ValueError – value is not a valid cookie value.

set_header(name, value)
Set a header for this response to a given value.

Warning: Calling this method overwrites any values already set for this header. To append an addi-
tional value for this header, use append_header() instead.

Warning: This method cannot be used to set cookies; instead, use append_header() or
set_cookie().

Parameters

• name (str) – Header name (case-insensitive). The name may contain only US-ASCII
characters.

136 Chapter 5. Documentation

https://docs.python.org/3/library/functions.html#bool
https://tools.ietf.org/html/rfc6265#section-4.1.2.5
https://docs.python.org/3/library/functions.html#bool
https://tools.ietf.org/html/rfc6265#section-4.1.2.6
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis-03#section-4.1.2.7
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

• value (str) – Value for the header. As with the header’s name, the value may contain
only US-ASCII characters.

Raises ValueError – name cannot be 'Set-Cookie'.

set_headers(headers)
Set several headers at once.

This method can be used to set a collection of raw header names and values all at once.

Warning: Calling this method overwrites any existing values for the given header. If a list containing
multiple instances of the same header is provided, only the last value will be used. To add multiple
values to the response for a given header, see append_header().

Warning: This method cannot be used to set cookies; instead, use append_header() or
set_cookie().

Parameters headers (Iterable[[str, str]]) – An iterable of [name, value]
two-member iterables, or a dict-like object that implements an items() method. Both
name and value must be of type str and contain only US-ASCII characters.

Note: Falcon can process an iterable of tuples slightly faster than a dict.

Raises ValueError – headers was not a dict or list of tuple or Iterable[[str,
str]].

set_stream(stream, content_length)
Set both stream and content_length.

Although the stream and content_length properties may be set directly, using this method ensures
content_length is not accidentally neglected when the length of the stream is known in advance.
Using this method is also slightly more performant as compared to setting the properties individually.

Note: If the stream length is unknown, you can set stream directly, and ignore content_length.
In this case, the ASGI server may choose to use chunked encoding or one of the other strategies suggested
by PEP-3333.

Parameters

• stream – A readable file-like object.

• content_length (int) – Length of the stream, used for the Content-Length header
in the response.

unset_cookie(name, domain=None, path=None)
Unset a cookie in the response.

Clears the contents of the cookie, and instructs the user agent to immediately expire its own copy of the
cookie.

5.4. Framework Reference 137

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

Note: Modern browsers place restriction on cookies without the “same-site” cookie attribute set. To that
end this attribute is set to 'Lax' by this method.

(See also: Same-Site warnings)

Warning: In order to successfully remove a cookie, both the path and the domain must match the
values that were used when the cookie was created.

Parameters name (str) – Cookie name

Keyword Arguments

• domain (str) – Restricts the cookie to a specific domain and any subdomains of that
domain. By default, the user agent will return the cookie only to the origin server. When
overriding this default behavior, the specified domain must include the origin server. Oth-
erwise, the user agent will reject the cookie.

Note: Cookies do not provide isolation by port, so the domain should not provide one.
(See also: RFC 6265, Section 8.5)

(See also: RFC 6265, Section 4.1.2.3)

• path (str) – Scopes the cookie to the given path plus any subdirectories under that path
(the “/” character is interpreted as a directory separator). If the cookie does not specify a
path, the user agent defaults to the path component of the requested URI.

Warning: User agent interfaces do not always isolate cookies by path, and so this
should not be considered an effective security measure.

(See also: RFC 6265, Section 4.1.2.4)

property vary
Value to use for the Vary header.

Set this property to an iterable of header names. For a single asterisk or field value, simply pass a single-
element list or tuple.

The “Vary” header field in a response describes what parts of a request message, aside from the method,
Host header field, and request target, might influence the origin server’s process for selecting and repre-
senting this response. The value consists of either a single asterisk (“*”) or a list of header field names
(case-insensitive).

(See also: RFC 7231, Section 7.1.4)

138 Chapter 5. Documentation

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite#Fixing_common_warnings
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc6265#section-8.5
https://tools.ietf.org/html/rfc6265#section-4.1.2.3
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc6265#section-4.1.2.4
https://tools.ietf.org/html/rfc7231#section-7.1.4

Falcon Documentation, Release 3.0.1

ASGI Request & Response

• Request

• Response

Instances of the falcon.asgi.Request and falcon.asgi.Response classes are passed into responders as
the second and third arguments, respectively:

import falcon.asgi

class Resource:

async def on_get(self, req, resp):
resp.media = {'message': 'Hello world!'}
resp.status = 200

-- snip --

app = falcon.asgi.App()
app.add_route('/', Resource())

Request

class falcon.asgi.Request(scope, receive, first_event=None, options=None)
Represents a client’s HTTP request.

Note: Request is not meant to be instantiated directly by responders.

Parameters

• scope (dict) – ASGI HTTP connection scope passed in from the server (see also: Con-
nection Scope).

• receive (awaitable) – ASGI awaitable callable that will yield a new event dictionary
when one is available.

Keyword Arguments

• first_event (dict) – First ASGI event received from the client, if one was preloaded
(default None).

• options (falcon.request.RequestOptions) – Set of global request options
passed from the App handler.

scope
Reference to the ASGI HTTP connection scope passed in from the server (see also: Connection Scope).

Type dict

context
Empty object to hold any data (in its attributes) about the request which is specific to your app (e.g. session
object). Falcon itself will not interact with this attribute after it has been initialized.

5.4. Framework Reference 139

https://docs.python.org/3/library/stdtypes.html#dict
https://asgi.readthedocs.io/en/latest/specs/www.html#connection-scope
https://asgi.readthedocs.io/en/latest/specs/www.html#connection-scope
https://docs.python.org/3/library/stdtypes.html#dict
https://asgi.readthedocs.io/en/latest/specs/www.html#connection-scope
https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

Note: The preferred way to pass request-specific data, when using the default context type, is to set
attributes directly on the context object. For example:

req.context.role = 'trial'
req.context.user = 'guest'

Type object

context_type
Class variable that determines the factory or type to use for initializing the context attribute. By default,
the framework will instantiate bare objects (instances of the bare falcon.Context class). However,
you may override this behavior by creating a custom child class of falcon.asgi.Request, and then
passing that new class to falcon.asgi.App() by way of the latter’s request_type parameter.

Note: When overriding context_type with a factory function (as opposed to a class), the function is called
like a method of the current Request instance. Therefore the first argument is the Request instance itself
(i.e., self).

Type class

scheme
URL scheme used for the request. One of 'http', 'https', 'ws', or 'wss'. Defaults to 'http'
for the http scope, or 'ws' for the websocket scope, when the ASGI server does not include the
scheme in the connection scope.

Note: If the request was proxied, the scheme may not match what was originally requested by the client.
forwarded_scheme can be used, instead, to handle such cases.

Type str

is_websocket
Set to True IFF this request was made as part of a WebSocket handshake.

Type bool

forwarded_scheme
Original URL scheme requested by the user agent, if the request was proxied. Typical values are 'http'
or 'https'.

The following request headers are checked, in order of preference, to determine the forwarded scheme:

• Forwarded

• X-Forwarded-For

If none of these headers are available, or if the Forwarded header is available but does not contain a “proto”
parameter in the first hop, the value of scheme is returned instead.

(See also: RFC 7239, Section 1)

Type str

140 Chapter 5. Documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://tools.ietf.org/html/rfc7239#section-1
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

method
HTTP method requested, uppercased (e.g., 'GET', 'POST', etc.)

Type str

host
Host request header field, if present. If the Host header is missing, this attribute resolves to the ASGI
server’s listening host name or IP address.

Type str

forwarded_host
Original host request header as received by the first proxy in front of the application server.

The following request headers are checked, in order of preference, to determine the forwarded scheme:

• Forwarded

• X-Forwarded-Host

If none of the above headers are available, or if the Forwarded header is available but the “host” parameter
is not included in the first hop, the value of host is returned instead.

Note: Reverse proxies are often configured to set the Host header directly to the one that was originally
requested by the user agent; in that case, using host is sufficient.

(See also: RFC 7239, Section 4)

Type str

port
Port used for the request. If the Host header is present in the request, but does not specify a port, the default
one for the given schema is returned (80 for HTTP and 443 for HTTPS). If the request does not include a
Host header, the listening port for the ASGI server is returned instead.

Type int

netloc
Returns the “host:port” portion of the request URL. The port may be omitted if it is the default one for the
URL’s schema (80 for HTTP and 443 for HTTPS).

Type str

subdomain
Leftmost (i.e., most specific) subdomain from the hostname. If only a single domain name is given,
subdomain will be None.

Note: If the hostname in the request is an IP address, the value for subdomain is undefined.

Type str

root_path
The initial portion of the request URI’s path that corresponds to the application object, so that the applica-
tion knows its virtual “location”. This may be an empty string, if the application corresponds to the “root”
of the server.

(Corresponds to the “root_path” ASGI HTTP scope field.)

Type str

5.4. Framework Reference 141

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc7239#section-4
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

uri
The fully-qualified URI for the request.

Type str

url
Alias for uri.

Type str

forwarded_uri
Original URI for proxied requests. Uses forwarded_scheme and forwarded_host in order to
reconstruct the original URI requested by the user agent.

Type str

relative_uri
The path and query string portion of the request URI, omitting the scheme and host.

Type str

prefix
The prefix of the request URI, including scheme, host, and app root_path (if any).

Type str

forwarded_prefix
The prefix of the original URI for proxied requests. Uses forwarded_scheme and
forwarded_host in order to reconstruct the original URI.

Type str

path
Path portion of the request URI (not including query string).

Warning: If this attribute is to be used by the app for any upstream requests, any non URL-safe
characters in the path must be URL encoded back before making the request.

Note: req.path may be set to a new value by a process_request() middleware method in order
to influence routing. If the original request path was URL encoded, it will be decoded before being returned
by this attribute.

Type str

query_string
Query string portion of the request URI, without the preceding ‘?’ character.

Type str

uri_template
The template for the route that was matched for this request. May be None if the request has not yet been
routed, as would be the case for process_request() middleware methods. May also be None if
your app uses a custom routing engine and the engine does not provide the URI template when resolving
a route.

Type str

142 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

remote_addr
IP address of the closest known client or proxy to the ASGI server, or '127.0.0.1' if unknown.

This property’s value is equivalent to the last element of the access_route property.

Type str

access_route
IP address of the original client (if known), as well as any known addresses of proxies fronting the ASGI
server.

The following request headers are checked, in order of preference, to determine the addresses:

• Forwarded

• X-Forwarded-For

• X-Real-IP

In addition, the value of the “client” field from the ASGI connection scope will be appended to the end
of the list if not already included in one of the above headers. If the “client” field is not available, it will
default to '127.0.0.1'.

Note: Per RFC 7239, the access route may contain “unknown” and obfuscated identifiers, in addition to
IPv4 and IPv6 addresses

Warning: Headers can be forged by any client or proxy. Use this property with caution and validate
all values before using them. Do not rely on the access route to authorize requests!

Type list

forwarded
Value of the Forwarded header, as a parsed list of falcon.Forwarded objects, or None if the header
is missing. If the header value is malformed, Falcon will make a best effort to parse what it can.

(See also: RFC 7239, Section 4)

Type list

date
Value of the Date header, converted to a datetime instance. The header value is assumed to conform to
RFC 1123.

Type datetime

auth
Value of the Authorization header, or None if the header is missing.

Type str

user_agent
Value of the User-Agent header, or None if the header is missing.

Type str

referer
Value of the Referer header, or None if the header is missing.

Type str

5.4. Framework Reference 143

https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc7239
https://docs.python.org/3/library/stdtypes.html#list
https://tools.ietf.org/html/rfc7239#section-4
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

accept
Value of the Accept header, or '*/*' if the header is missing.

Type str

client_accepts_json
True if the Accept header indicates that the client is willing to receive JSON, otherwise False.

Type bool

client_accepts_msgpack
True if the Accept header indicates that the client is willing to receive MessagePack, otherwise False.

Type bool

client_accepts_xml
True if the Accept header indicates that the client is willing to receive XML, otherwise False.

Type bool

cookies
A dict of name/value cookie pairs. The returned object should be treated as read-only to avoid unintended
side-effects. If a cookie appears more than once in the request, only the first value encountered will be
made available here.

See also: get_cookie_values()

Type dict

content_type
Value of the Content-Type header, or None if the header is missing.

Type str

content_length
Value of the Content-Length header converted to an int, or None if the header is missing.

Type int

stream
File-like input object for reading the body of the request, if any.

See also: falcon.asgi.BoundedStream

Type falcon.asgi.BoundedStream

media
An awaitable property that acts as an alias for get_media(). This can be used to ease the porting of a
WSGI app to ASGI, although the await keyword must still be added when referencing the property:

deserialized_media = await req.media

Type object

expect
Value of the Expect header, or None if the header is missing.

Type str

range
A 2-member tuple parsed from the value of the Range header.

144 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

The two members correspond to the first and last byte positions of the requested resource, inclusive. Neg-
ative indices indicate offset from the end of the resource, where -1 is the last byte, -2 is the second-to-last
byte, and so forth.

Only continuous ranges are supported (e.g., “bytes=0-0,-1” would result in an HTTPBadRequest exception
when the attribute is accessed.)

Type tuple of int

range_unit
Unit of the range parsed from the value of the Range header, or None if the header is missing

Type str

if_match
Value of the If-Match header, as a parsed list of falcon.ETag objects or None if the header is missing
or its value is blank.

This property provides a list of all entity-tags in the header, both strong and weak, in the same order
as listed in the header.

(See also: RFC 7232, Section 3.1)

Type list

if_none_match
Value of the If-None-Match header, as a parsed list of falcon.ETag objects or None if the header is
missing or its value is blank.

This property provides a list of all entity-tags in the header, both strong and weak, in the same order
as listed in the header.

(See also: RFC 7232, Section 3.2)

Type list

if_modified_since
Value of the If-Modified-Since header, or None if the header is missing.

Type datetime

if_unmodified_since
Value of the If-Unmodified-Since header, or None if the header is missing.

Type datetime

if_range
Value of the If-Range header, or None if the header is missing.

Type str

headers
Raw HTTP headers from the request with canonical dash-separated names. Parsing all the headers to
create this dict is done the first time this attribute is accessed, and the returned object should be treated
as read-only. Note that this parsing can be costly, so unless you need all the headers in this format, you
should instead use the get_header() method or one of the convenience attributes to get a value for a
specific header.

Type dict

params
The mapping of request query parameter names to their values. Where the parameter appears multiple
times in the query string, the value mapped to that parameter key will be a list of all the values in the order
seen.

5.4. Framework Reference 145

https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc7232#section-3.1
https://docs.python.org/3/library/stdtypes.html#list
https://tools.ietf.org/html/rfc7232#section-3.2
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

Type dict

options
Set of global options passed in from the App handler.

Type falcon.request.RequestOptions

client_accepts(media_type)
Determine whether or not the client accepts a given media type.

Parameters media_type (str) – An Internet media type to check.

Returns True if the client has indicated in the Accept header that it accepts the specified media
type. Otherwise, returns False.

Return type bool

client_prefers(media_types)
Return the client’s preferred media type, given several choices.

Parameters media_types (iterable of str) – One or more Internet media types from
which to choose the client’s preferred type. This value must be an iterable collection of
strings.

Returns The client’s preferred media type, based on the Accept header. Returns None if the
client does not accept any of the given types.

Return type str

get_cookie_values(name)
Return all values provided in the Cookie header for the named cookie.

(See also: Getting Cookies)

Parameters name (str) – Cookie name, case-sensitive.

Returns Ordered list of all values specified in the Cookie header for the named cookie, or
None if the cookie was not included in the request. If the cookie is specified more than
once in the header, the returned list of values will preserve the ordering of the individual
cookie-pair’s in the header.

Return type list

get_header(name, required=False, default=None)
Retrieve the raw string value for the given header.

Parameters name (str) – Header name, case-insensitive (e.g., ‘Content-Type’)

Keyword Arguments

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
gracefully when the header is not found (default False).

• default (any) – Value to return if the header is not found (default None).

Returns The value of the specified header if it exists, or the default value if the header is not
found and is not required.

Return type str

Raises HTTPBadRequest – The header was not found in the request, but it was required.

get_header_as_datetime(header, required=False, obs_date=False)
Return an HTTP header with HTTP-Date values as a datetime.

Parameters name (str) – Header name, case-insensitive (e.g., ‘Date’)

146 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Keyword Arguments

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
gracefully when the header is not found (default False).

• obs_date (bool) – Support obs-date formats according to RFC 7231, e.g.: “Sunday,
06-Nov-94 08:49:37 GMT” (default False).

Returns The value of the specified header if it exists, or None if the header is not found and is
not required.

Return type datetime

Raises

• HTTPBadRequest – The header was not found in the request, but it was required.

• HttpInvalidHeader – The header contained a malformed/invalid value.

async get_media(default_when_empty=<object object>)
Return a deserialized form of the request stream.

The first time this method is called, the request stream will be deserialized using the Content-Type header
as well as the media-type handlers configured via falcon.RequestOptions. The result will be
cached and returned in subsequent calls:

deserialized_media = await req.get_media()

If the matched media handler raises an error while attempting to deserialize the request body, the exception
will propagate up to the caller.

See also Media for more information regarding media handling.

Note: When get_media is called on a request with an empty body, Falcon will let the media handler
try to deserialize the body and will return the value returned by the handler or propagate the exception
raised by it. To instead return a different value in case of an exception by the handler, specify the argument
default_when_empty.

Warning: This operation will consume the request stream the first time it’s called and cache the
results. Follow-up calls will just retrieve a cached version of the object.

Parameters default_when_empty – Fallback value to return when there is no body in the
request and the media handler raises an error (like in the case of the default JSON media
handler). By default, Falcon uses the value returned by the media handler or propagates the
raised exception, if any. This value is not cached, and will be used only for the current call.

Returns The deserialized media representation.

Return type media (object)

get_param(name, required=False, store=None, default=None)
Return the raw value of a query string parameter as a string.

Note: If an HTML form is POSTed to the API using the application/x-www-form-urlencoded media type,
Falcon can automatically parse the parameters from the request body via get_media().

5.4. Framework Reference 147

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

Falcon Documentation, Release 3.0.1

See also: How can I access POSTed form params?

Note: Similar to the way multiple keys in form data are handled, if a query parameter is included in
the query string multiple times, only one of those values will be returned, and it is undefined which one.
This caveat also applies when auto_parse_qs_csv is enabled and the given parameter is assigned to
a comma-separated list of values (e.g., foo=a,b,c).

When multiple values are expected for a parameter, get_param_as_list() can be used to retrieve
all of them at once.

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘sort’).

Keyword Arguments

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found (default False).

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is present.

• default (any) – If the param is not found returns the given value instead of None

Returns The value of the param as a string, or None if param is not found and is not required.

Return type str

Raises HTTPBadRequest – A required param is missing from the request.

get_param_as_bool(name, required=False, store=None, blank_as_true=True, default=None)
Return the value of a query string parameter as a boolean.

This method treats valueless parameters as flags. By default, if no value is provided for the parameter in
the query string, True is assumed and returned. If the parameter is missing altogether, None is returned
as with other get_param_*() methods, which can be easily treated as falsy by the caller as needed.

The following boolean strings are supported:

TRUE_STRINGS = ('true', 'True', 't', 'yes', 'y', '1', 'on')
FALSE_STRINGS = ('false', 'False', 'f', 'no', 'n', '0', 'off')

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘detailed’).

Keyword Arguments

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found or is not a recognized boolean string (default
False).

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is found (default None).

• blank_as_true (bool) – Valueless query string parameters are treated as flags, result-
ing in True being returned when such a parameter is present, and False otherwise. To
require the client to explicitly opt-in to a truthy value, pass blank_as_true=False to
return False when a value is not specified in the query string.

• default (any) – If the param is not found, return this value instead of None.

148 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#any

Falcon Documentation, Release 3.0.1

Returns The value of the param if it is found and can be converted to a bool. If the param is
not found, returns None unless required is True.

Return type bool

Raises HTTPBadRequest – A required param is missing from the request, or can not be con-
verted to a bool.

get_param_as_date(name, format_string='%Y-%m-%d', required=False, store=None, de-
fault=None)

Return the value of a query string parameter as a date.

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘ids’).

Keyword Arguments

• format_string (str) – String used to parse the param value into a date. Any format
recognized by strptime() is supported (default "%Y-%m-%d").

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found (default False).

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is found (default None).

• default (any) – If the param is not found returns the given value instead of None

Returns The value of the param if it is found and can be converted to a date according to the
supplied format string. If the param is not found, returns None unless required is True.

Return type datetime.date

Raises HTTPBadRequest – A required param is missing from the request, or the value could
not be converted to a date.

get_param_as_datetime(name, format_string='%Y-%m-%dT%H:%M:%SZ', required=False,
store=None, default=None)

Return the value of a query string parameter as a datetime.

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘ids’).

Keyword Arguments

• format_string (str) – String used to parse the param value into a datetime. Any
format recognized by strptime() is supported (default '%Y-%m-%dT%H:%M:%SZ').

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found (default False).

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is found (default None).

• default (any) – If the param is not found returns the given value instead of None

Returns The value of the param if it is found and can be converted to a datetime according to
the supplied format string. If the param is not found, returns None unless required is True.

Return type datetime.datetime

Raises HTTPBadRequest – A required param is missing from the request, or the value could
not be converted to a datetime.

get_param_as_float(name, required=False, min_value=None, max_value=None, store=None, de-
fault=None)

Return the value of a query string parameter as an float.

5.4. Framework Reference 149

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/datetime.html#datetime.datetime

Falcon Documentation, Release 3.0.1

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘limit’).

Keyword Arguments

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found or is not an float (default False).

• min_value (float) – Set to the minimum value allowed for this param. If the param
is found and it is less than min_value, an HTTPError is raised.

• max_value (float) – Set to the maximum value allowed for this param. If the param
is found and its value is greater than max_value, an HTTPError is raised.

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is found (default None).

• default (any) – If the param is not found returns the given value instead of None

Returns The value of the param if it is found and can be converted to an float. If the param
is not found, returns None, unless required is True.

Return type float

Raises

HTTPBadRequest: The param was not found in the request, even though it was required to be
there, or it was found but could not be converted to an float. Also raised if the param’s value
falls outside the given interval, i.e., the value must be in the interval: min_value <= value <=
max_value to avoid triggering an error.

get_param_as_int(name, required=False, min_value=None, max_value=None, store=None, de-
fault=None)

Return the value of a query string parameter as an int.

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘limit’).

Keyword Arguments

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found or is not an integer (default False).

• min_value (int) – Set to the minimum value allowed for this param. If the param is
found and it is less than min_value, an HTTPError is raised.

• max_value (int) – Set to the maximum value allowed for this param. If the param is
found and its value is greater than max_value, an HTTPError is raised.

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is found (default None).

• default (any) – If the param is not found returns the given value instead of None

Returns The value of the param if it is found and can be converted to an int. If the param is
not found, returns None, unless required is True.

Return type int

Raises

HTTPBadRequest: The param was not found in the request, even though it was required to be
there, or it was found but could not be converted to an int. Also raised if the param’s value
falls outside the given interval, i.e., the value must be in the interval: min_value <= value <=
max_value to avoid triggering an error.

150 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

get_param_as_json(name, required=False, store=None, default=None)
Return the decoded JSON value of a query string parameter.

Given a JSON value, decode it to an appropriate Python type, (e.g., dict, list, str, int, bool, etc.)

Warning: If the auto_parse_qs_csv option is set to True (default False), the framework will
misinterpret any JSON values that include literal (non-percent-encoded) commas. If the query string
may include JSON, you can use JSON array syntax in lieu of CSV as a workaround.

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘payload’).

Keyword Arguments

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found (default False).

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is found (default None).

• default (any) – If the param is not found returns the given value instead of None

Returns The value of the param if it is found. Otherwise, returns None unless required is True.

Return type dict

Raises HTTPBadRequest – A required param is missing from the request, or the value could
not be parsed as JSON.

get_param_as_list(name, transform=None, required=False, store=None, default=None)
Return the value of a query string parameter as a list.

List items must be comma-separated or must be provided as multiple instances of the same param in the
query string ala application/x-www-form-urlencoded.

Note: To enable the interpretation of comma-separated parameter values, the auto_parse_qs_csv
option must be set to True (default False).

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘ids’).

Keyword Arguments

• transform (callable) – An optional transform function that takes as input each el-
ement in the list as a str and outputs a transformed element for inclusion in the list that
will be returned. For example, passing int will transform list items into numbers.

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found (default False).

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is found (default None).

• default (any) – If the param is not found returns the given value instead of None

Returns

The value of the param if it is found. Otherwise, returns None unless required is True.

5.4. Framework Reference 151

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#any

Falcon Documentation, Release 3.0.1

Empty list elements will be included by default, but this behavior can be configured by setting
the keep_blank_qs_values option. For example, by default the following query strings
would both result in ['1', '', '3']:

things=1&things=&things=3
things=1,,3

Note, however, that for the second example string above to be interpreted as a list, the
auto_parse_qs_csv option must be set to True.

Return type list

Raises HTTPBadRequest – A required param is missing from the request, or a transform
function raised an instance of ValueError.

get_param_as_uuid(name, required=False, store=None, default=None)
Return the value of a query string parameter as an UUID.

The value to convert must conform to the standard UUID string representation per RFC 4122. For example,
the following strings are all valid:

Lowercase
'64be949b-3433-4d36-a4a8-9f19d352fee8'

Uppercase
'BE71ECAA-F719-4D42-87FD-32613C2EEB60'

Mixed
'81c8155C-D6de-443B-9495-39Fa8FB239b5'

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘id’).

Keyword Arguments

• required (bool) – Set to True to raise HTTPBadRequest instead of returning
None when the parameter is not found or is not a UUID (default False).

• store (dict) – A dict-like object in which to place the value of the param, but only
if the param is found (default None).

• default (any) – If the param is not found returns the given value instead of None

Returns The value of the param if it is found and can be converted to a UUID. If the param is
not found, returns default (default None), unless required is True.

Return type UUID

Raises

HTTPBadRequest: The param was not found in the request, even though it was required to be
there, or it was found but could not be converted to a UUID.

has_param(name)
Determine whether or not the query string parameter already exists.

Parameters name (str) – Parameter name, case-sensitive (e.g., ‘sort’).

Returns True if param is found, or False if param is not found.

Return type bool

152 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

log_error(message)
Write a message to the server’s log.

Warning: Although this method is inherited from the WSGI Request class, it is not supported for
ASGI apps. Please use the standard library logging framework instead.

class falcon.asgi.BoundedStream(receive, first_event=None, content_length=None)
File-like input object for reading the body of the request, if any.

This class implements coroutine functions for asynchronous reading or iteration, but otherwise provides an
interface similar to that defined by io.IOBase.

If the request includes a Content-Length header, the number of bytes in the stream will be truncated to the length
specified by the header. Otherwise, the stream will yield data until the ASGI server indicates that no more bytes
are available.

For large request bodies, the preferred method of using the stream object is as an asynchronous iterator. In this
mode, each body chunk is simply yielded in its entirety, as it is received from the ASGI server. Because no data
is buffered by the framework, this is the most memory-efficient way of reading the request body:

If the request body is empty or has already be consumed, the iteration
will immediately stop without yielding any data chunks. Otherwise, a
series of byte # strings will be yielded until the entire request
body has been yielded or the client disconnects.
async for data_chunk in req.stream

pass

The stream object also supports asynchronous read() and readall() methods:

Read all of the data at once; use only when you are confident
that the request body is small enough to not eat up all of
your memory. For small bodies, this is the most performant
option.
data = await req.stream.readall()

...or call read() without arguments
data = await req.stream.read()

...or read the data in chunks. You may choose to read more
or less than 32 KiB as shown in this example. But note that
this approach will generally be less efficient as compared
to async iteration, resulting in more usage and
copying of memory.
while True:

data_chunk = await req.stream.read(32 * 1024)
if not data_chunk:

break

Warning: Apps may not use both read() and the asynchronous iterator interface to consume the same
request body; the only time that it is safe to do so is when one or the other method is used to completely
read the entire body before the other method is even attempted. Therefore, it is important to always call
exhaust() or close() if a body has only been partially read and the remaining data is to be ignored.

Note: The stream object provides a convenient abstraction over the series of body chunks contained in any

5.4. Framework Reference 153

https://docs.python.org/3/library/io.html#io.IOBase

Falcon Documentation, Release 3.0.1

ASGI “http.request” events received by the app. As such, some request body data may be temporarily buffered
in memory during and between calls to read from the stream. The framework has been designed to minimize
the amount of data that must be buffered in this manner.

Parameters receive (awaitable) – ASGI awaitable callable that will yield a new request event
dictionary when one is available.

Keyword Arguments

• first_event (dict) – First ASGI event received from the client, if one was preloaded
(default None).

• content_length (int) – Expected content length of the stream, derived from the
Content-Length header in the request (if available).

close()
Clear any buffered data and close this stream.

Once the stream is closed, any operation on it will raise an instance of ValueError.

As a convenience, it is allowed to call this method more than once; only the first call, however, will have
an effect.

async exhaust()
Consume and immediately discard any remaining data in the stream.

fileno()
Raise an instance of OSError since a file descriptor is not used.

isatty()
Return False always.

async read(size=None)
Read some or all of the remaining bytes in the request body.

Warning: A size should always be specified, unless you can be certain that you have enough free
memory for the entire request body, and that you have configured your web server to limit request
bodies to a reasonable size (to guard against malicious requests).

Warning: Apps may not use both read() and the asynchronous iterator interface to consume the
same request body; the only time that it is safe to do so is when one or the other method is used to
completely read the entire body before the other method is even attempted. Therefore, it is important
to always call exhaust() or close() if a body has only been partially read and the remaining data
is to be ignored.

Keyword Arguments size (int) – The maximum number of bytes to read. The actual amount
of data that can be read will depend on how much is available, and may be smaller than the
amount requested. If the size is -1 or not specified, all remaining data is read and returned.

Returns The request body data, or b'' if the body is empty or has already been consumed.

Return type bytes

readable()
Return True always.

154 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes

Falcon Documentation, Release 3.0.1

async readall()
Read and return all remaining data in the request body.

Warning: Only use this method when you can be certain that you have enough free memory for
the entire request body, and that you have configured your web server to limit request bodies to a
reasonable size (to guard against malicious requests).

Returns The request body data, or b'' if the body is empty or has already been consumed.

Return type bytes

seekable()
Return False always.

tell()
Return the number of bytes read from the stream so far.

writable()
Return False always.

Response

class falcon.asgi.Response(options=None)
Represents an HTTP response to a client request.

Note: Response is not meant to be instantiated directly by responders.

Keyword Arguments options (dict) – Set of global options passed from the App handler.

status
HTTP status code or line (e.g., '200 OK'). This may be set to a member of http.HTTPStatus, an
HTTP status line string or byte string (e.g., '200 OK'), or an int.

Note: The Falcon framework itself provides a number of constants for common status codes. They all
start with the HTTP_ prefix, as in: falcon.HTTP_204. (See also: Status Codes.)

media
A serializable object supported by the media handlers configured via falcon.RequestOptions.

Note: See also Media for more information regarding media handling.

Type object

text
String representing response content.

5.4. Framework Reference 155

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/http.html#http.HTTPStatus
https://docs.python.org/3/library/functions.html#object

Falcon Documentation, Release 3.0.1

Note: Falcon will encode the given text as UTF-8 in the response. If the content is already a byte string,
use the data attribute instead (it’s faster).

Type str

body
Deprecated alias for text. Will be removed in a future Falcon version.

Type str

data
Byte string representing response content.

Use this attribute in lieu of text when your content is already a byte string (of type bytes).

Warning: Always use the text attribute for text, or encode it first to bytes when using the data
attribute, to ensure Unicode characters are properly encoded in the HTTP response.

Type bytes

stream
An async iterator or generator that yields a series of byte strings that will be streamed to the ASGI server
as a series of “http.response.body” events. Falcon will assume the body is complete when the iterable is
exhausted or as soon as it yields None rather than an instance of bytes:

async def producer():
while True:

data_chunk = await read_data()
if not data_chunk:

break

yield data_chunk

resp.stream = producer

Alternatively, a file-like object may be used as long as it implements an awaitable read() method:

resp.stream = await aiofiles.open('resp_data.bin', 'rb')

If the object assigned to stream holds any resources (such as a file handle) that must be explicitly re-
leased, the object must implement a close() method. The close() method will be called after ex-
hausting the iterable or file-like object.

Note: In order to be compatible with Python 3.7+ and PEP 479, async iterators must return None instead
of raising StopIteration. This requirement does not apply to async generators (PEP 525).

Note: If the stream length is known in advance, you may wish to also set the Content-Length header on
the response.

sse
A Server-Sent Event (SSE) emitter, implemented as an async iterator or generator that yields a series of

156 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#StopIteration

Falcon Documentation, Release 3.0.1

of falcon.asgi.SSEvent instances. Each event will be serialized and sent to the client as HTML5
Server-Sent Events:

async def emitter():
while True:

some_event = await get_next_event()

if not some_event:
Send an event consisting of a single "ping"
comment to keep the connection alive.
yield SSEvent()

Alternatively, one can simply yield None and
a "ping" will also be sent as above.

yield

continue

yield SSEvent(json=some_event, retry=5000)

...or

yield SSEvent(data=b'something', event_id=some_id)

Alternatively, you may yield anything that implements
a serialize() method that returns a byte string
conforming to the SSE event stream format.

yield some_event

resp.sse = emitter()

Note: When the sse property is set, it supersedes both the text and data properties.

Note: When hosting an app that emits Server-Sent Events, the web server should be set with a relatively
long keep-alive TTL to minimize the overhead of connection renegotiations.

Type coroutine

context
Empty object to hold any data (in its attributes) about the response which is specific to your app (e.g.
session object). Falcon itself will not interact with this attribute after it has been initialized.

Note: The preferred way to pass response-specific data, when using the default context type, is to set
attributes directly on the context object. For example:

resp.context.cache_strategy = 'lru'

Type object

5.4. Framework Reference 157

https://docs.python.org/3/library/functions.html#object

Falcon Documentation, Release 3.0.1

context_type
Class variable that determines the factory or type to use for initializing the context attribute. By default,
the framework will instantiate bare objects (instances of the bare falcon.Context class). However,
you may override this behavior by creating a custom child class of falcon.asgi.Response, and then
passing that new class to falcon.App() by way of the latter’s response_type parameter.

Note: When overriding context_type with a factory function (as opposed to a class), the function is called
like a method of the current Response instance. Therefore the first argument is the Response instance itself
(self).

Type class

options
Set of global options passed in from the App handler.

Type dict

headers
Copy of all headers set for the response, sans cookies. Note that a new copy is created and returned each
time this property is referenced.

Type dict

complete
Set to True from within a middleware method to signal to the framework that request processing should
be short-circuited (see also Middleware).

Type bool

property accept_ranges
Set the Accept-Ranges header.

The Accept-Ranges header field indicates to the client which range units are supported (e.g. “bytes”) for
the target resource.

If range requests are not supported for the target resource, the header may be set to “none” to advise the
client not to attempt any such requests.

Note: “none” is the literal string, not Python’s built-in None type.

append_header(name, value)
Set or append a header for this response.

If the header already exists, the new value will normally be appended to it, delimited by a comma. The
notable exception to this rule is Set-Cookie, in which case a separate header line for each value will be
included in the response.

Note: While this method can be used to efficiently append raw Set-Cookie headers to the response, you
may find set_cookie() to be more convenient.

Parameters

• name (str) – Header name (case-insensitive). The name may contain only US-ASCII
characters.

158 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

• value (str) – Value for the header. As with the header’s name, the value may contain
only US-ASCII characters.

append_link(target, rel, title=None, title_star=None, anchor=None, hreflang=None,
type_hint=None, crossorigin=None)

Append a link header to the response.

(See also: RFC 5988, Section 1)

Note: Calling this method repeatedly will cause each link to be appended to the Link header value,
separated by commas.

Note: So-called “link-extension” elements, as defined by RFC 5988, are not yet supported. See also Issue
#288.

Parameters

• target (str) – Target IRI for the resource identified by the link. Will be converted to a
URI, if necessary, per RFC 3987, Section 3.1.

• rel (str) – Relation type of the link, such as “next” or “bookmark”.

(See also: http://www.iana.org/assignments/link-relations/link-relations.xhtml)

Keyword Arguments

• title (str) – Human-readable label for the destination of the link (default None). If
the title includes non-ASCII characters, you will need to use title_star instead, or provide
both a US-ASCII version using title and a Unicode version using title_star.

• title_star (tuple of str) – Localized title describing the destination of the link
(default None). The value must be a two-member tuple in the form of (language-tag, text),
where language-tag is a standard language identifier as defined in RFC 5646, Section 2.1,
and text is a Unicode string.

Note: language-tag may be an empty string, in which case the client will assume the
language from the general context of the current request.

Note: text will always be encoded as UTF-8.

• anchor (str) – Override the context IRI with a different URI (default None). By default,
the context IRI for the link is simply the IRI of the requested resource. The value provided
may be a relative URI.

• hreflang (str or iterable) – Either a single language-tag, or a list or tuple
of such tags to provide a hint to the client as to the language of the result of following the
link. A list of tags may be given in order to indicate to the client that the target resource is
available in multiple languages.

• type_hint (str) – Provides a hint as to the media type of the result of dereferencing
the link (default None). As noted in RFC 5988, this is only a hint and does not override
the Content-Type header returned when the link is followed.

5.4. Framework Reference 159

https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc5988#section-1
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc3987#section-3.1.
https://docs.python.org/3/library/stdtypes.html#str
http://www.iana.org/assignments/link-relations/link-relations.xhtml
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc5646#section-2.1
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

• crossorigin (str) – Determines how cross origin requests are handled. Can take
values ‘anonymous’ or ‘use-credentials’ or None. (See: https://www.w3.org/TR/html50/
infrastructure.html#cors-settings-attribute)

property cache_control
Set the Cache-Control header.

Used to set a list of cache directives to use as the value of the Cache-Control header. The list will be joined
with “, ” to produce the value for the header.

property content_length
Set the Content-Length header.

This property can be used for responding to HEAD requests when you aren’t actually providing the re-
sponse body, or when streaming the response. If either the text property or the data property is set on the
response, the framework will force Content-Length to be the length of the given text bytes. Therefore, it
is only necessary to manually set the content length when those properties are not used.

Note: In cases where the response content is a stream (readable file-like object), Falcon will not supply a
Content-Length header to the server unless content_length is explicitly set. Consequently, the server may
choose to use chunked encoding in this case.

property content_location
Set the Content-Location header.

This value will be URI encoded per RFC 3986. If the value that is being set is already URI encoded it
should be decoded first or the header should be set manually using the set_header method.

property content_range
A tuple to use in constructing a value for the Content-Range header.

The tuple has the form (start, end, length, [unit]), where start and end designate the range (inclusive), and
length is the total length, or ‘*’ if unknown. You may pass int’s for these numbers (no need to convert to
str beforehand). The optional value unit describes the range unit and defaults to ‘bytes’

Note: You only need to use the alternate form, ‘bytes */1234’, for responses that use the status ‘416
Range Not Satisfiable’. In this case, raising falcon.HTTPRangeNotSatisfiable will do the right
thing.

(See also: RFC 7233, Section 4.2)

property content_type
Sets the Content-Type header.

The falcon module provides a number of constants for common media types, including falcon.
MEDIA_JSON, falcon.MEDIA_MSGPACK, falcon.MEDIA_YAML, falcon.MEDIA_XML,
falcon.MEDIA_HTML, falcon.MEDIA_JS, falcon.MEDIA_TEXT, falcon.MEDIA_JPEG,
falcon.MEDIA_PNG, and falcon.MEDIA_GIF.

delete_header(name)
Delete a header that was previously set for this response.

If the header was not previously set, nothing is done (no error is raised). Otherwise, all values set for the
header will be removed from the response.

Note that calling this method is equivalent to setting the corresponding header property (when said property
is available) to None. For example:

160 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://www.w3.org/TR/html50/infrastructure.html#cors-settings-attribute
https://www.w3.org/TR/html50/infrastructure.html#cors-settings-attribute
https://tools.ietf.org/html/rfc7233#section-4.2

Falcon Documentation, Release 3.0.1

resp.etag = None

Warning: This method cannot be used with the Set-Cookie header. Instead, use unset_cookie()
to remove a cookie and ensure that the user agent expires its own copy of the data as well.

Parameters name (str) – Header name (case-insensitive). The name may contain only US-
ASCII characters.

Raises ValueError – name cannot be 'Set-Cookie'.

property downloadable_as
Set the Content-Disposition header using the given filename.

The value will be used for the filename directive. For example, given 'report.pdf', the Content-
Disposition header would be set to: 'attachment; filename="report.pdf"'.

As per RFC 6266 recommendations, non-ASCII filenames will be encoded using the filename* direc-
tive, whereas filename will contain the US ASCII fallback.

property etag
Set the ETag header.

The ETag header will be wrapped with double quotes "value" in case the user didn’t pass it.

property expires
Set the Expires header. Set to a datetime (UTC) instance.

Note: Falcon will format the datetime as an HTTP date string.

get_header(name, default=None)
Retrieve the raw string value for the given header.

Normally, when a header has multiple values, they will be returned as a single, comma-delimited string.
However, the Set-Cookie header does not support this format, and so attempting to retrieve it will raise an
error.

Parameters name (str) – Header name, case-insensitive. Must be of type str or
StringType, and only character values 0x00 through 0xFF may be used on platforms
that use wide characters.

Keyword Arguments default – Value to return if the header is not found (default None).

Raises ValueError – The value of the ‘Set-Cookie’ header(s) was requested.

Returns The value of the specified header if set, or the default value if not set.

Return type str

property last_modified
Set the Last-Modified header. Set to a datetime (UTC) instance.

Note: Falcon will format the datetime as an HTTP date string.

property location
Set the Location header.

5.4. Framework Reference 161

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://tools.ietf.org/html/rfc6266#appendix-D
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

This value will be URI encoded per RFC 3986. If the value that is being set is already URI encoded it
should be decoded first or the header should be set manually using the set_header method.

async render_body()
Get the raw bytestring content for the response body.

This coroutine can be awaited to get the raw data for the HTTP response body, taking into account the
text, data, and media attributes.

Note: This method ignores stream; the caller must check and handle that attribute directly.

Returns The UTF-8 encoded value of the text attribute, if set. Otherwise, the value of the data
attribute if set, or finally the serialized value of the media attribute. If none of these attributes
are set, None is returned.

Return type bytes

property retry_after
Set the Retry-After header.

The expected value is an integral number of seconds to use as the value for the header. The HTTP-date
syntax is not supported.

schedule(callback)
Schedule an async callback to run soon after sending the HTTP response.

This method can be used to execute a background job after the response has been returned to the client.

The callback is assumed to be an async coroutine function. It will be scheduled to run on the event loop as
soon as possible.

The callback will be invoked without arguments. Use functools.partial to pass arguments to the
callback as needed.

Note: If an unhandled exception is raised while processing the request, the callback will not be scheduled
to run.

Note: When an SSE emitter has been set on the response, the callback will be scheduled before the first
call to the emitter.

Warning: Because coroutines run on the main request thread, care should be taken to ensure they are
non-blocking. Long-running operations must use async libraries or delegate to an Executor pool to
avoid blocking the processing of subsequent requests.

Parameters

• callback (object) – An async coroutine function. The callback will be

• without arguments. (invoked) –

schedule_sync(callback)
Schedule a synchronous callback to run soon after sending the HTTP response.

162 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor
https://docs.python.org/3/library/functions.html#object

Falcon Documentation, Release 3.0.1

This method can be used to execute a background job after the response has been returned to the client.

The callback is assumed to be a synchronous (non-coroutine) function. It will be scheduled on the
event loop’s default Executor (which can be overridden via asyncio.AbstractEventLoop.
set_default_executor()).

The callback will be invoked without arguments. Use functools.partial to pass arguments to the
callback as needed.

Note: If an unhandled exception is raised while processing the request, the callback will not be scheduled
to run.

Note: When an SSE emitter has been set on the response, the callback will be scheduled before the first
call to the emitter.

Warning: Synchronous callables run on the event loop’s default Executor, which
uses an instance of ThreadPoolExecutor unless asyncio.AbstractEventLoop.
set_default_executor() is used to change it to something else. Due to the GIL, CPU-bound
jobs will block request processing for the current process unless the default Executor is changed
to one that is process-based instead of thread-based (e.g., an instance of concurrent.futures.
ProcessPoolExecutor).

Parameters callback (object) – An async coroutine function or a synchronous callable.
The callback will be called without arguments.

set_cookie(name, value, expires=None, max_age=None, domain=None, path=None, secure=None,
http_only=True, same_site=None)

Set a response cookie.

Note: This method can be called multiple times to add one or more cookies to the response.

See also:

To learn more about setting cookies, see Setting Cookies. The parameters listed below correspond to those
defined in RFC 6265.

Parameters

• name (str) – Cookie name

• value (str) – Cookie value

Keyword Arguments

• expires (datetime) – Specifies when the cookie should expire. By default, cookies
expire when the user agent exits.

(See also: RFC 6265, Section 4.1.2.1)

• max_age (int) – Defines the lifetime of the cookie in seconds. By default, cookies
expire when the user agent exits. If both max_age and expires are set, the latter is ignored
by the user agent.

5.4. Framework Reference 163

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ProcessPoolExecutor
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ProcessPoolExecutor
https://docs.python.org/3/library/functions.html#object
http://tools.ietf.org/html/rfc6265
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#module-datetime
https://tools.ietf.org/html/rfc6265#section-4.1.2.1
https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

Note: Coercion to int is attempted if provided with float or str.

(See also: RFC 6265, Section 4.1.2.2)

• domain (str) – Restricts the cookie to a specific domain and any subdomains of that
domain. By default, the user agent will return the cookie only to the origin server. When
overriding this default behavior, the specified domain must include the origin server. Oth-
erwise, the user agent will reject the cookie.

Note: Cookies do not provide isolation by port, so the domain should not provide one.
(See also: RFC 6265, Section 8.5)

(See also: RFC 6265, Section 4.1.2.3)

• path (str) – Scopes the cookie to the given path plus any subdirectories under that path
(the “/” character is interpreted as a directory separator). If the cookie does not specify a
path, the user agent defaults to the path component of the requested URI.

Warning: User agent interfaces do not always isolate cookies by path, and so this
should not be considered an effective security measure.

(See also: RFC 6265, Section 4.1.2.4)

• secure (bool) – Direct the client to only return the cookie in subsequent requests if they
are made over HTTPS (default: True). This prevents attackers from reading sensitive
cookie data.

Note: The default value for this argument is normally True, but can be modified by
setting secure_cookies_by_default via App.resp_options.

Warning: For the secure cookie attribute to be effective, your application will need
to enforce HTTPS.

(See also: RFC 6265, Section 4.1.2.5)

• http_only (bool) – The HttpOnly attribute limits the scope of the cookie to HTTP
requests. In particular, the attribute instructs the user agent to omit the cookie when pro-
viding access to cookies via “non-HTTP” APIs. This is intended to mitigate some forms
of cross-site scripting. (default: True)

Note: HttpOnly cookies are not visible to javascript scripts in the browser. They are
automatically sent to the server on javascript XMLHttpRequest or Fetch requests.

(See also: RFC 6265, Section 4.1.2.6)

• same_site (str) – Helps protect against CSRF attacks by restricting when a cookie
will be attached to the request by the user agent. When set to 'Strict', the cookie
will only be sent along with “same-site” requests. If the value is 'Lax', the cookie will
be sent with same-site requests, and with “cross-site” top-level navigations. If the value

164 Chapter 5. Documentation

https://tools.ietf.org/html/rfc6265#section-4.1.2.2
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc6265#section-8.5
https://tools.ietf.org/html/rfc6265#section-4.1.2.3
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc6265#section-4.1.2.4
https://docs.python.org/3/library/functions.html#bool
https://tools.ietf.org/html/rfc6265#section-4.1.2.5
https://docs.python.org/3/library/functions.html#bool
https://tools.ietf.org/html/rfc6265#section-4.1.2.6
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

is 'None', the cookie will be sent with same-site and cross-site requests. Finally, when
this attribute is not set on the cookie, the attribute will be treated as if it had been set to
'None'.

(See also: Same-Site RFC Draft)

Raises

• KeyError – name is not a valid cookie name.

• ValueError – value is not a valid cookie value.

set_header(name, value)
Set a header for this response to a given value.

Warning: Calling this method overwrites any values already set for this header. To append an addi-
tional value for this header, use append_header() instead.

Warning: This method cannot be used to set cookies; instead, use append_header() or
set_cookie().

Parameters

• name (str) – Header name (case-insensitive). The name may contain only US-ASCII
characters.

• value (str) – Value for the header. As with the header’s name, the value may contain
only US-ASCII characters.

Raises ValueError – name cannot be 'Set-Cookie'.

set_headers(headers)
Set several headers at once.

This method can be used to set a collection of raw header names and values all at once.

Warning: Calling this method overwrites any existing values for the given header. If a list containing
multiple instances of the same header is provided, only the last value will be used. To add multiple
values to the response for a given header, see append_header().

Warning: This method cannot be used to set cookies; instead, use append_header() or
set_cookie().

Parameters headers (Iterable[[str, str]]) – An iterable of [name, value]
two-member iterables, or a dict-like object that implements an items() method. Both
name and value must be of type str and contain only US-ASCII characters.

Note: Falcon can process an iterable of tuples slightly faster than a dict.

5.4. Framework Reference 165

https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis-03#section-4.1.2.7
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Raises ValueError – headers was not a dict or list of tuple or Iterable[[str,
str]].

set_stream(stream, content_length)
Set both stream and content_length.

Although the stream and content_length properties may be set directly, using this method ensures
content_length is not accidentally neglected when the length of the stream is known in advance.
Using this method is also slightly more performant as compared to setting the properties individually.

Note: If the stream length is unknown, you can set stream directly, and ignore content_length. In
this case, the ASGI server may choose to use chunked encoding for HTTP/1.1

Parameters

• stream – A readable, awaitable file-like object or async iterable that returns byte strings.
If the object implements a close() method, it will be called after reading all of the data.

• content_length (int) – Length of the stream, used for the Content-Length header
in the response.

unset_cookie(name, domain=None, path=None)
Unset a cookie in the response.

Clears the contents of the cookie, and instructs the user agent to immediately expire its own copy of the
cookie.

Note: Modern browsers place restriction on cookies without the “same-site” cookie attribute set. To that
end this attribute is set to 'Lax' by this method.

(See also: Same-Site warnings)

Warning: In order to successfully remove a cookie, both the path and the domain must match the
values that were used when the cookie was created.

Parameters name (str) – Cookie name

Keyword Arguments

• domain (str) – Restricts the cookie to a specific domain and any subdomains of that
domain. By default, the user agent will return the cookie only to the origin server. When
overriding this default behavior, the specified domain must include the origin server. Oth-
erwise, the user agent will reject the cookie.

Note: Cookies do not provide isolation by port, so the domain should not provide one.
(See also: RFC 6265, Section 8.5)

(See also: RFC 6265, Section 4.1.2.3)

• path (str) – Scopes the cookie to the given path plus any subdirectories under that path
(the “/” character is interpreted as a directory separator). If the cookie does not specify a
path, the user agent defaults to the path component of the requested URI.

166 Chapter 5. Documentation

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite#Fixing_common_warnings
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc6265#section-8.5
https://tools.ietf.org/html/rfc6265#section-4.1.2.3
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Warning: User agent interfaces do not always isolate cookies by path, and so this
should not be considered an effective security measure.

(See also: RFC 6265, Section 4.1.2.4)

property vary
Value to use for the Vary header.

Set this property to an iterable of header names. For a single asterisk or field value, simply pass a single-
element list or tuple.

The “Vary” header field in a response describes what parts of a request message, aside from the method,
Host header field, and request target, might influence the origin server’s process for selecting and repre-
senting this response. The value consists of either a single asterisk (“*”) or a list of header field names
(case-insensitive).

(See also: RFC 7231, Section 7.1.4)

class falcon.asgi.SSEvent(data=None, text=None, json=None, event=None, event_id=None,
retry=None, comment=None)

Represents a Server-Sent Event (SSE).

Instances of this class can be yielded by an async generator in order to send a series of Server-Sent Events to the
user agent.

(See also: falcon.asgi.Response.sse)

Keyword Arguments

• data (bytes) – Raw byte string to use as the data field for the event message. Takes
precedence over both text and json.

• text (str) – String to use for the data field in the message. Will be encoded as UTF-8
in the event. Takes precedence over json.

• json (object) – JSON-serializable object to be converted to JSON and used as the data
field in the event message.

• event (str) – A string identifying the event type (AKA event name).

• event_id (str) – The event ID that the User Agent should use for the EventSource
object’s last event ID value.

• retry (int) – The reconnection time to use when attempting to send the event. This must
be an integer, specifying the reconnection time in milliseconds.

• comment (str) – Comment to include in the event message; this is normally ignored by
the user agent, but is useful when composing a periodic “ping” message to keep the con-
nection alive. Since this is a common use case, a default “ping” comment will be included
in any event that would otherwise be blank (i.e., one that does not specify any fields when
initializing the SSEvent instance.)

data
Raw byte string to use as the data field for the event message. Takes precedence over both text and json.

Type bytes

text
String to use for the data field in the message. Will be encoded as UTF-8 in the event. Takes precedence
over json.

Type str

5.4. Framework Reference 167

https://tools.ietf.org/html/rfc6265#section-4.1.2.4
https://tools.ietf.org/html/rfc7231#section-7.1.4
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

json
JSON-serializable object to be converted to JSON and used as the data field in the event message.

Type object

event
A string identifying the event type (AKA event name).

Type str

event_id
The event ID that the User Agent should use for the EventSource object’s last event ID value.

Type str

retry
The reconnection time to use when attempting to send the event. This must be an integer, specifying the
reconnection time in milliseconds.

Type int

comment
Comment to include in the event message; this is normally ignored by the user agent, but is useful when
composing a periodic “ping” message to keep the connection alive. Since this is a common use case, a
default “ping” comment will be included in any event that would otherwise be blank (i.e., one that does
not specify any of these fields when initializing the SSEvent instance.)

Type str

serialize(handler=None)
Serialize this event to string.

Parameters handler – Handler object that will be used to serialize the json attribute to
string. When not provided, a default handler using the builtin JSON library will be used
(default None).

Returns string representation of this event.

Return type bytes

5.4.3 WebSocket (ASGI Only)

• Usage

• Lost Connections

• Error Handling

• Media Handlers

• Extended Example

• Testing

• Reference

– WebSocket Class

– Built-in Media Handlers

– Error Types

168 Chapter 5. Documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

Falcon Documentation, Release 3.0.1

– Options

Falcon builds upon the ASGI WebSocket Specification to provide a simple, no-nonsense WebSocket server implemen-
tation.

With support for both WebSocket and Server-Sent Events (SSE), Falcon facilitates real-time, event-oriented commu-
nication between an ASGI application and a web browser, mobile app, or other client application.

Note: See also falcon.asgi.Response.sse to learn more about Falcon’s Server-Sent Event (SSE) support,

Usage

With Falcon you can easily add WebSocket support to any route in your ASGI app, simply by implementing an
on_websocket() responder in the resource class for that route. As with regular HTTP requests, WebSocket flows
can be augmented with middleware components and media handlers.

When a WebSocket handshake arrives (via a standard HTTP request), Falcon will first route it as usual to a specific
resource class instance. Along the way, the following middleware methods will be invoked, if implemented on any
middleware objects configured for the app:

class SomeMiddleware:
async def process_request_ws(self, req, ws):

"""Process a WebSocket handshake request before routing it.

Note:
Because Falcon routes each request based on req.path, a
request can be effectively re-routed by setting that
attribute to a new value from within process_request().

Args:
req: Request object that will eventually be

passed into an on_websocket() responder method.
ws: The WebSocket object that will be passed into

on_websocket() after routing.
"""

async def process_resource_ws(self, req, ws, resource, params):
"""Process a WebSocket handshake request after routing.

Note:
This method is only called when the request matches
a route to a resource.

Args:
req: Request object that will be passed to the

routed responder.
ws: WebSocket object that will be passed to the

routed responder.
resource: Resource object to which the request was

routed.
params: A dict-like object representing any additional

params derived from the route's URI template fields,
that will be passed to the resource's responder
method as keyword arguments.

"""

5.4. Framework Reference 169

https://asgi.readthedocs.io/en/latest/specs/www.html#websocket
https://tools.ietf.org/html/rfc6455
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events

Falcon Documentation, Release 3.0.1

If a route is found for the requested path, the framework will then check for a responder coroutine named
on_websocket() on the target resource. If the responder is found, it is invoked in a similar manner to a regu-
lar on_get() responder, except that a falcon.asgi.WebSocket object is passed in, instead of an object of
type falcon.asgi.Response.

For example, given a route that includes an account_id path parameter, the framework would expect an
on_websocket() responder similar to this:

async def on_websocket(self, req: Request, ws: WebSocket, account_id: str):
pass

If no route matches the path requested in the WebSocket handshake, control then passes to a default responder that sim-
ply raises an instance of HTTPRouteNotFound. By default, this error will be rendered as a 403 response with a 3404
close code. This behavior can be modified by adding a custom error handler (see also: add_error_handler()).

Similarly, if a route exists but the target resource does not implement an on_websocket() responder, the framework
invokes a default responder that raises an instance of HTTPMethodNotAllowed. This class will be rendered by
default as a 403 response with a 3405 close code.

Lost Connections

When the app attempts to receive a message from the client, the ASGI server emits a disconnect event if the connection
has been lost for any reason. Falcon surfaces this event by raising an instance of WebSocketDisconnected to
the caller.

On the other hand, the ASGI spec requires the ASGI server to silently consume messages sent by the app after the
connection has been lost (i.e., it should not be considered an error). Therefore, an endpoint that primarily streams
outbound events to the client might continue consuming resources unnecessarily for some time after the connection is
lost.

As a workaround, Falcon implements a small incoming message queue that is used to detect a lost connection and then
raise an instance of WebSocketDisconnected to the caller the next time it attempts to send a message.

This workaround is only necessary when the app itself does not consume messages from the client often enough to
quickly detect when the connection is lost. Otherwise, Falcon’s receive queue can be disabled for a slight performance
boost by setting max_receive_queue to 0 via ws_options.

Note also that some ASGI server implementations do not strictly follow the ASGI spec in this regard, and in fact will
raise an error when the app attempts to send a message after the client disconnects. If testing reveals this to be the case
for your ASGI server of choice, Falcon’s own receive queue can be safely disabled.

Error Handling

Falcon handles errors raised by an on_websocket() responder in a similar way to errors raised by other responders,
with the following caveats.

First, when calling a custom error handler, the framework will pass None for the resp argument, while the
WebSocket object representing the current connection will be passed as a keyword argument named ws:

async def my_error_handler(req, resp, ex, params, ws=None):
When invoked as a result of an error being raised by an
on_websocket() responder, resp will be None and
ws will be the same falcon.asgi.WebSocket object that
was passed into the responder.
pass

170 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

Second, it’s important to note that if no route matches the path in the WebSocket handshake request, or the matched
resource does not implement an on_websocket() responder, the default HTTP error responders will be invoked,
resulting in the request being denied with an HTTP 403 response and a WebSocket close code of either 3404 (Not
Found) or 3405 (Method Not Allowed). Generally speaking, if either a default responder or on_websocket()
raises an instance of HTTPError, the default error handler will close the WebSocket connection with a framework
close code derived by adding 3000 to the HTTP status code (e.g., 3404).

Finally, in the case of a generic unhandled exception, a default error handler is invoked that will do its best to clean up
the connection, closing it with the standard WebSocket close code 1011 (Internal Error). If your ASGI server does not
support this code, the framework will use code 3011 instead; or you can customize it via the error_close_code
property of ws_options.

As with any responder, the default error handlers for the app may be overridden via add_error_handler().

Media Handlers

By default, send_media() and receive_media() will serialize to (and deserialize from) JSON for a TEXT
payload, and to/from MessagePack for a BINARY payload (see also: Built-in Media Handlers).

Note: In order to use the default MessagePack handler, the extra msgpack package (version 0.5.2 or higher) must
be installed in addition to falcon from PyPI:

$ pip install msgpack

WebSocket media handling can be customized by using falcon.asgi.App.ws_options to specify an alterna-
tive handler for one or both payload types, as in the following example.

Let's say we want to use a faster JSON library. You could also use this
pattern to add serialization support for custom types that aren't
normally JSON-serializable out of the box.
class RapidJSONHandler(falcon.media.TextBaseHandlerWS):

def serialize(self, media: object) -> str:
return rapidjson.dumps(media, ensure_ascii=False)

The raw TEXT payload will be passed as a Unicode string
def deserialize(self, payload: str) -> object:

return rapidjson.loads(payload)

And/or for binary mode we want to use CBOR:
class CBORHandler(media.BinaryBaseHandlerWS):

def serialize(self, media: object) -> bytes:
return cbor2.dumps(media)

The raw BINARY payload will be passed as a byte string
def deserialize(self, payload: bytes) -> object:

return cbor2.loads(payload)

app = falcon.asgi.App()

Expected to (de)serialize from/to str
json_handler = RapidJSONHandler()
app.ws_options.media_handlers[falcon.WebSocketPayloadType.TEXT] = json_handler

Expected to (de)serialize from/to bytes, bytearray, or memoryview

(continues on next page)

5.4. Framework Reference 171

Falcon Documentation, Release 3.0.1

(continued from previous page)

cbor_handler = ProtocolBuffersHandler()
app.ws_options.media_handlers[falcon.WebSocketPayloadType.BINARY] = cbor_handler

The falcon module defines the following Enum values for specifying the WebSocket payload type:

falcon.WebSocketPayloadType.TEXT
falcon.WebSocketPayloadType.BINARY

Extended Example

Here is a more comprehensive (albeit rather contrived) example that illustrates some of the different ways an applica-
tion can interact with a WebSocket connection. This example also introduces some common WebSocket errors raised
by the framework.

import falcon.asgi
import falcon.media

class SomeResource:

Get a paginated list of events via a regular HTTP request.
#
For small-scale, all-in-one apps, it may make sense to support
both a regular HTTP interface and one based on WebSocket
side-by-side in the same deployment. However, these two
interaction models have very different performance characteristics,
and so larger scale-out deployments may wish to specifically
designate instance groups for one type of traffic vs. the
other (although the actual applications may still be capable
of handling both modes).
#
async def on_get(self, req: Request, account_id: str):

pass

Push event stream to client. Note that the framework will pass
parameters defined in the URI template as with HTTP method
responders.
async def on_websocket(self, req: Request, ws: WebSocket, account_id: str):

The HTTP request used to initiate the WebSocket handshake can be
examined as needed.
some_header_value = req.get_header('Some-Header')

Reject it?
if some_condition:

If close() is called before accept() the code kwarg is
ignored, if present, and the server returns a 403
HTTP response without upgrading the connection.
await ws.close()
return

Examine subprotocols advertised by the client. Here let's just
assume we only support wamp, so if the client doesn't advertise
it we reject the connection.
if 'wamp' not in ws.subprotocols:

(continues on next page)

172 Chapter 5. Documentation

https://docs.python.org/3/library/enum.html#enum.Enum

Falcon Documentation, Release 3.0.1

(continued from previous page)

If close() is not called explicitly, the framework will
take care of it automatically with the default code (1000).
return

If, after examining the connection info, you would like to accept
it, simply call accept() as follows:
try:

await ws.accept(subprotocol='wamp')
except WebSocketDisconnected:

return

Simply start sending messages to the client if this is an event
feed endpoint.
while True:

try:
event = await my_next_event()

Send an instance of str as a WebSocket TEXT (0x01) payload
await ws.send_text(event)

Send an instance of bytes, bytearray, or memoryview as a
WebSocket BINARY (0x02) payload.
await ws.send_data(event)

Or if you want it to be serialized to JSON (by default; can
be customized via app.ws_options.media_handlers):
await ws.send_media(event) # Defaults to WebSocketPayloadType.TEXT

except WebSocketDisconnected:
Do any necessary cleanup, then bail out
return

...or loop like this to implement a simple request-response protocol
while True:

try:
Use this if you expect a WebSocket TEXT (0x01) payload,
decoded from UTF-8 to a Unicode string.
payload_str = await ws.receive_text()

Or if you are expecting a WebSocket BINARY (0x02) payload,
in which case you will end up with a byte string result:
payload_bytes = await ws.receive_data()

Or if you want to get a serialized media object (defaults to
JSON deserialization of text payloads, and MessagePack
deserialization for BINARY payloads, but this can be
customized via app.ws_options.media_handlers).
media_object = await ws.receive_media()

except WebSocketDisconnected:
Do any necessary cleanup, then bail out
return

except TypeError:
The received message payload was not of the expected
type (e.g., got BINARY when TEXT was expected).
pass

except json.JSONDecodeError:
The default media deserializer uses the json standard

(continues on next page)

5.4. Framework Reference 173

Falcon Documentation, Release 3.0.1

(continued from previous page)

library, so you might see this error raised as well.
pass

At any time, you may decide to close the websocket. If the
socket is already closed, this call does nothing (it will
not raise an error.)
if we_are_so_done_with_this_conversation():

https://developer.mozilla.org/en-US/docs/Web/API/CloseEvent
await ws.close(code=1000)
return

try:
Here we are sending as a binary (0x02) payload type, which
will go find the handler configured for that (defaults to
MessagePack which assumes you've also installed that
package, but this can be customized as mentioned above.')
await ws.send_media(

{'event': 'message'},
payload_type=WebSocketPayloadType.BINARY,

)

except WebSocketDisconnected:
Do any necessary cleanup, then bail out. If ws.close() was
not already called by the app, the framework will take
care of it.

NOTE: If you do not handle this exception, it will be
bubbled up to a default error handler that simply
logs the message as a warning and then closes the
server side of the connection. This handler can be
overridden as with any other error handler for the app.

return

...or run a couple of different loops in parallel to support
independent bidirectional message streams.

messages = collections.deque()

async def sink():
while True:

try:
message = await ws.receive_text()

except falcon.WebSocketDisconnected:
break

messages.append(message)

sink_task = falcon.create_task(sink())

while not sink_task.done():
while ws.ready and not messages and not sink_task.done():

await asyncio.sleep(0)

try:
await ws.send_text(messages.popleft())

except falcon.WebSocketDisconnected:
(continues on next page)

174 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

(continued from previous page)

break

sink_task.cancel()
try:

await sink_task
except asyncio.CancelledError:

pass

class SomeMiddleware:
async def process_request_ws(self, req: Request, ws: WebSocket):

This will be called for the HTTP request that initiates the
WebSocket handshake before routing.
pass

async def process_resource_ws(self, req: Request, ws: WebSocket, resource,
→˓params):

This will be called for the HTTP request that initiates the
WebSocket handshake after routing (if a route matches the
request).
pass

app = falcon.asgi.App(middleware=SomeMiddleware())
app.add_route('/{account_id}/messages', SomeResource())

Testing

Falcon’s testing framework includes support for simulating WebSocket connections with the falcon.testing.
ASGIConductor class, as demonstrated in the following example.

This context manages the ASGI app lifecycle, including lifespan events
async with testing.ASGIConductor(some_app) as c:

async def post_events():
for i in range(100):

await c.simulate_post('/events', json={'id': i}):
await asyncio.sleep(0.01)

async def get_events_ws():
Simulate a WebSocket connection
async with c.simulate_ws('/events') as ws:

while some_condition:
message = await ws.receive_text()

asyncio.gather(post_events(), get_events_ws())

See also: simulate_ws().

5.4. Framework Reference 175

Falcon Documentation, Release 3.0.1

Reference

WebSocket Class

The framework passes an instance of the following class into the on_websocket() responder. Conceptually, this
class takes the place of the falcon.asgi.Response class for WebSocket connections.

class falcon.asgi.WebSocket(ver: str, scope: dict, receive: Callable[], Await-
able[dict]], send: Callable[[dict], Awaitable], me-
dia_handlers: Mapping[falcon.constants.WebSocketPayloadType,
Union[falcon.media.base.BinaryBaseHandlerWS, fal-
con.media.base.TextBaseHandlerWS]], max_receive_queue: int)

Represents a single WebSocket connection with a client.

ready
True if the WebSocket connection has been accepted and the client is still connected, False otherwise.

Type bool

unaccepted
True if the WebSocket connection has not yet been accepted, False otherwise.

Type bool)

closed
True if the WebSocket connection has been closed by the server or the client has disconnected.

Type bool

subprotocols
The list of subprotocol strings advertised by the client, or an empty tuple if no subprotocols were specified.

Type tuple[str]

supports_accept_headers
True if the ASGI server hosting the app supports sending headers when accepting the WebSocket con-
nection, False otherwise.

Type bool

async accept(subprotocol: Optional[str] = None, headers: Optional[Union[Iterable[Iterable[str]],
Mapping[str, str]]] = None)

Accept the incoming WebSocket connection.

If, after examining the connection’s attributes (headers, advertised subprotocols, etc.) the request should
be accepted, the responder must first await this coroutine method to finalize the WebSocket handshake.
Alternatively, the responder may deny the connection request by awaiting the close() method.

Keyword Arguments

• subprotocol (str) – The subprotocol the app wishes to accept, out of the list of pro-
tocols that the client suggested. If more than one of the suggested protocols is acceptable,
the first one in the list from the client should be selected (see also: subprotocols).

When left unspecified, a Sec-WebSocket-Protocol header will not be included in the re-
sponse to the client. The client may choose to abandon the connection in this case, if it
does not receive an explicit protocol selection.

• headers (Iterable[[str, str]]) – An iterable of [name: str, value:
str] two-item iterables, representing a collection of HTTP headers to include in the
handshake response. Both name and value must be of type str and contain only US-
ASCII characters.

176 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Alternatively, a dict-like object may be passed that implements an items() method.

Note: This argument is only supported for ASGI servers that implement spec version 2.1
or better. If an app needs to be compatible with multiple ASGI servers, it can reference
the supports_accept_headers property to determine if the hosting server supports
this feature.

async close(code: Optional[int] = None)→ None
Close the WebSocket connection.

This coroutine method sends a WebSocket CloseEvent to the client and then proceeds to actually close
the connection.

The responder can also use this method to deny a connection request simply by awaiting it instead of
accept(). In this case, the client will receive an HTTP 403 response to the handshake.

Keyword Arguments code (int) – The close code to use for the CloseEvent (default 1000).
See also: https://developer.mozilla.org/en-US/docs/Web/API/CloseEvent

async receive_data()→ bytes
Receive a message from the client with a binary data payload.

Awaiting this coroutine will block until a message is available or the WebSocket is disconnected.

async receive_media()→ object
Receive a deserialized object from the client.

The incoming payload type determines the media handler that will be used to deserialize the object (see
also: Media Handlers).

async receive_text()→ str
Receive a message from the client with a Unicode string payload.

Awaiting this coroutine will block until a message is available or the WebSocket is disconnected.

async send_data(payload: Union[bytes, bytearray, memoryview])→ None
Send a message to the client with a binary data payload.

Parameters payload (Union[bytes, bytearray, memoryview]) – The binary
data to send.

async send_media(media: object, payload_type: falcon.constants.WebSocketPayloadType = <Web-
SocketPayloadType.TEXT: 1>)→ None

Send a serializable object to the client.

The payload type determines the media handler that will be used to serialize the given object (see also:
Media Handlers).

Parameters media (object) – The object to send.

Keyword Arguments payload_type (falcon.WebSocketPayloadType) – The pay-
load type to use for the message (default falcon.WebSocketPayloadType.TEXT).

Must be one of:

falcon.WebSocketPayloadType.TEXT
falcon.WebSocketPayloadType.BINARY

async send_text(payload: str)→ None
Send a message to the client with a Unicode string payload.

Parameters payload (str) – The string to send.

5.4. Framework Reference 177

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://developer.mozilla.org/en-US/docs/Web/API/CloseEvent
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Built-in Media Handlers

class falcon.media.TextBaseHandlerWS
Abstract Base Class for a WebSocket TEXT media handler.

deserialize(payload: str)→ object
Deserialize TEXT payloads from a Unicode string.

By default, this method raises an instance of NotImplementedError. Therefore, it must be overridden
if the child class wishes to support deserialization from TEXT (0x01) message payloads.

Parameters payload (str) – Message payload to deserialize.

Returns A deserialized object.

Return type object

serialize(media: object)→ str
Serialize the media object to a Unicode string.

By default, this method raises an instance of NotImplementedError. Therefore, it must be overridden
if the child class wishes to support serialization to TEXT (0x01) message payloads.

Parameters media (object) – A serializable object.

Returns The resulting serialized string from the input object.

Return type str

class falcon.media.BinaryBaseHandlerWS
Abstract Base Class for a WebSocket BINARY media handler.

deserialize(payload: bytes)→ object
Deserialize BINARY payloads from a byte string.

By default, this method raises an instance of NotImplementedError. Therefore, it must be overridden
if the child class wishes to support deserialization from BINARY (0x02) message payloads.

Parameters payload (bytes) – Message payload to deserialize.

Returns A deserialized object.

Return type object

serialize(media: object)→ Union[bytes, bytearray, memoryview]
Serialize the media object to a byte string.

By default, this method raises an instance of NotImplementedError. Therefore, it must be overridden
if the child class wishes to support serialization to BINARY (0x02) message payloads.

Parameters media (object) – A serializable object.

Returns The resulting serialized byte string from the input object. May be an instance of
bytes, bytearray, or memoryview.

Return type bytes

class falcon.media.JSONHandlerWS(dumps=None, loads=None)
WebSocket media handler for de(serializing) JSON to/from TEXT payloads.

This handler uses Python’s standard json library by default, but can be easily configured to use any of a
number of third-party JSON libraries, depending on your needs. For example, you can often realize a significant
performance boost under CPython by using an alternative library. Good options in this respect include orjson,
python-rapidjson, and mujson.

178 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/json.html#module-json

Falcon Documentation, Release 3.0.1

Note: If you are deploying to PyPy, we recommend sticking with the standard library’s JSON implementation,
since it will be faster in most cases as compared to a third-party library.

Overriding the default JSON implementation is simply a matter of specifying the desired dumps and loads
functions:

import falcon
from falcon import media

import rapidjson

json_handler = media.JSONHandlerWS(
dumps=rapidjson.dumps,
loads=rapidjson.loads,

)

app = falcon.asgi.App()
app.ws_options.media_handlers[falcon.WebSocketPayloadType.TEXT] = json_handler

By default, ensure_ascii is passed to the json.dumps function. If you override the dumps function, you
will need to explicitly set ensure_ascii to False in order to enable the serialization of Unicode characters
to UTF-8. This is easily done by using functools.partial to apply the desired keyword argument. In
fact, you can use this same technique to customize any option supported by the dumps and loads functions:

from functools import partial

from falcon import media
import rapidjson

json_handler = media.JSONHandlerWS(
dumps=partial(

rapidjson.dumps,
ensure_ascii=False, sort_keys=True

),
)

Keyword Arguments

• dumps (func) – Function to use when serializing JSON.

• loads (func) – Function to use when deserializing JSON.

class falcon.media.MessagePackHandlerWS
WebSocket media handler for de(serializing) MessagePack to/from BINARY payloads.

This handler uses msgpack.unpackb() and msgpack.packb(). The MessagePack bin type is used to
distinguish between Unicode strings (of type str) and byte strings (of type bytes).

Note: This handler requires the extra msgpack package (version 0.5.2 or higher), which must be installed in
addition to falcon from PyPI:

$ pip install msgpack

5.4. Framework Reference 179

https://docs.python.org/3/library/functools.html#functools.partial

Falcon Documentation, Release 3.0.1

Error Types

class falcon.WebSocketDisconnected(code: Optional[int] = None)
The websocket connection is lost.

This error is raised when attempting to perform an operation on the WebSocket and it is determined that either
the client has closed the connection, the server closed the connection, or the socket has otherwise been lost.

Keyword Arguments code (int) – The WebSocket close code, as per the WebSocket spec (de-
fault 1000).

code
The WebSocket close code, as per the WebSocket spec.

Type int

class falcon.WebSocketPathNotFound(code: Optional[int] = None)
No route could be found for the requested path.

A simulated WebSocket connection was attempted but the path specified in the handshake request did not match
any of the app’s routes.

class falcon.WebSocketHandlerNotFound(code: Optional[int] = None)
The routed resource does not contain an on_websocket() handler.

class falcon.WebSocketServerError(code: Optional[int] = None)
The server encountered an unexpected error.

class falcon.PayloadTypeError
The WebSocket message payload was not of the expected type.

Options

class falcon.asgi.WebSocketOptions
Defines a set of configurable WebSocket options.

An instance of this class is exposed via falcon.asgi.App.ws_options for configuring certain
WebSocket behaviors.

error_close_code
The WebSocket close code to use when an unhandled error is raised while handling a WebSocket connec-
tion (default 1011). For a list of valid close codes and ranges, see also: https://tools.ietf.org/html/rfc6455#
section-7.4

Type int

media_handlers
A dict-like object for configuring media handlers according to the WebSocket payload type (TEXT vs.
BINARY) of a given message. See also: Media Handlers.

Type dict

max_receive_queue
The maximum number of incoming messages to enqueue if the reception rate exceeds the consumption
rate of the application (default 4). When this limit is reached, the framework will wait to accept new
messages from the ASGI server until the application is able to catch up.

This limit applies to Falcon’s incoming message queue, and should generally be kept small since the
ASGI server maintains its own receive queue. Falcon’s queue can be disabled altogether by setting
max_receive_queue to 0 (see also: Lost Connections).

180 Chapter 5. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc6455#section-7.4
https://tools.ietf.org/html/rfc6455#section-7.4
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

Type int

5.4.4 Cookies

• Getting Cookies

• Setting Cookies

• The Secure Attribute

• The SameSite Attribute

Getting Cookies

Cookies can be read from a request either via the get_cookie_values() method or the cookies attribute on
the Request object. Generally speaking, the get_cookie_values() method should be used unless you need a
collection of all the cookies in the request.

Note: falcon.asgi.Request implements the same cookie methods and properties as falcon.Request.

Here’s an example showing how to get cookies from a request:

WSGI

ASGI

class Resource:
def on_get(self, req, resp):

Get a dict of name/value cookie pairs.
cookies = req.cookies

my_cookie_values = req.get_cookie_values('my_cookie')

if my_cookie_values:
NOTE: If there are multiple values set for the cookie, you
will need to choose how to handle the additional values.
v = my_cookie_values[0]

class Resource:
async def on_get(self, req, resp):

Get a dict of name/value cookie pairs.
cookies = req.cookies

NOTE: Since get_cookie_values() is synchronous, it does
not need to be await'd.
my_cookie_values = req.get_cookie_values('my_cookie')

if my_cookie_values:
NOTE: If there are multiple values set for the cookie, you
will need to choose how to handle the additional values.
v = my_cookie_values[0]

5.4. Framework Reference 181

https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

Setting Cookies

Setting cookies on a response may be done either via set_cookie() or append_header().

One of these methods should be used instead of set_header(). With set_header() you cannot set multiple
headers with the same name (which is how multiple cookies are sent to the client).

Note: falcon.asgi.Request implements the same cookie methods and properties as falcon.Request. The
ASGI versions of set_cookie() and append_header() are synchronous, so they do not need to be await’d.

Simple example:

Set the cookie 'my_cookie' to the value 'my cookie value'
resp.set_cookie('my_cookie', 'my cookie value')

You can of course also set the domain, path and lifetime of the cookie.

Set the maximum age of the cookie to 10 minutes (600 seconds)
and the cookie's domain to 'example.com'
resp.set_cookie('my_cookie', 'my cookie value',

max_age=600, domain='example.com')

You can also instruct the client to remove a cookie with the unset_cookie() method:

Set a cookie in middleware or in a previous request.
resp.set_cookie('my_cookie', 'my cookie value')

-- snip --

Clear the cookie for the current request and instruct the user agent
to expire its own copy of the cookie (if any).
resp.unset_cookie('my_cookie')

The Secure Attribute

By default, Falcon sets the secure attribute for cookies. This instructs the client to never transmit the cookie in the
clear over HTTP, in order to protect any sensitive data that cookie might contain. If a cookie is set, and a subsequent
request is made over HTTP (rather than HTTPS), the client will not include that cookie in the request.

Warning: For this attribute to be effective, your web server or load balancer will need to enforce HTTPS when
setting the cookie, as well as in all subsequent requests that require the cookie to be sent back from the client.

When running your application in a development environment, you can disable this default behavior by setting
secure_cookies_by_default to False via falcon.App.resp_options or falcon.asgi.App.
resp_options. This lets you test your app locally without having to set up TLS. You can make this option
configurable to easily switch between development and production environments.

See also: RFC 6265, Section 4.1.2.5

182 Chapter 5. Documentation

https://tools.ietf.org/html/rfc6265#section-4.1.2.5

Falcon Documentation, Release 3.0.1

The SameSite Attribute

The SameSite attribute may be set on a cookie using the set_cookie() method. It is generally a good idea to at
least set this attribute to 'Lax' in order to mitigate CSRF attacks.

Currently, set_cookie() does not set SameSite by default, although this may change in a future release.

Note: The standard http.cookies module does not support the SameSite attribute in versions prior to Python 3.8.
Therefore, Falcon performs a simple monkey-patch on the standard library module to backport this feature for apps
running on older Python versions.

5.4.5 Status Codes

• HTTPStatus

• 1xx Informational

• 2xx Success

• 3xx Redirection

• 4xx Client Error

• 5xx Server Error

Falcon provides a list of constants for common HTTP response status codes.

For example:

Override the default "200 OK" response status
resp.status = falcon.HTTP_409

Or, using the more verbose name:

resp.status = falcon.HTTP_CONFLICT

Using these constants helps avoid typos and cuts down on the number of string objects that must be created when
preparing responses. However, starting with Falcon version 3.0, an LRU is used to enable efficient use of http.
HTTPStatus and bare int codes as well (currently only implemented for the ASGI interface; see also: status).

Falcon also provides a generic HTTPStatus class. Simply raise an instance of this class from any hook, middleware,
or a responder to stop handling the request and skip to the response handling. It takes status, additional headers and
body as input arguments.

5.4. Framework Reference 183

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
http://httpstatus.es
https://docs.python.org/3/library/http.html#http.HTTPStatus
https://docs.python.org/3/library/http.html#http.HTTPStatus

Falcon Documentation, Release 3.0.1

HTTPStatus

class falcon.HTTPStatus(status, headers=None, text=None, body=None)
Represents a generic HTTP status.

Raise an instance of this class from a hook, middleware, or responder to short-circuit request processing in a
manner similar to falcon.HTTPError, but for non-error status codes.

Parameters

• status (str) – HTTP status code and text, such as ‘748 Confounded by Ponies’.

• headers (dict) – Extra headers to add to the response.

• text (str) – String representing response content. Falcon will encode this value as UTF-8
in the response.

• body (str) – Deprecated alias to text. Will be removed in a future Falcon version. text
take precedence if provided.

status
HTTP status line, e.g. ‘748 Confounded by Ponies’.

Type str

headers
Extra headers to add to the response.

Type dict

text
String representing response content. Falcon will encode this value as UTF-8 in the response.

Type str

body
Deprecated alias to text. Will be removed in a future Falcon version.

Type str

1xx Informational

HTTP_CONTINUE = HTTP_100
HTTP_SWITCHING_PROTOCOLS = HTTP_101
HTTP_PROCESSING = HTTP_102

HTTP_100 = '100 Continue'
HTTP_101 = '101 Switching Protocols'
HTTP_102 = '102 Processing'

184 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

2xx Success

HTTP_OK = HTTP_200
HTTP_CREATED = HTTP_201
HTTP_ACCEPTED = HTTP_202
HTTP_NON_AUTHORITATIVE_INFORMATION = HTTP_203
HTTP_NO_CONTENT = HTTP_204
HTTP_RESET_CONTENT = HTTP_205
HTTP_PARTIAL_CONTENT = HTTP_206
HTTP_MULTI_STATUS = HTTP_207
HTTP_ALREADY_REPORTED = HTTP_208
HTTP_IM_USED = HTTP_226

HTTP_200 = '200 OK'
HTTP_201 = '201 Created'
HTTP_202 = '202 Accepted'
HTTP_203 = '203 Non-Authoritative Information'
HTTP_204 = '204 No Content'
HTTP_205 = '205 Reset Content'
HTTP_206 = '206 Partial Content'
HTTP_207 = '207 Multi-Status'
HTTP_208 = '208 Already Reported'
HTTP_226 = '226 IM Used'

3xx Redirection

HTTP_MULTIPLE_CHOICES = HTTP_300
HTTP_MOVED_PERMANENTLY = HTTP_301
HTTP_FOUND = HTTP_302
HTTP_SEE_OTHER = HTTP_303
HTTP_NOT_MODIFIED = HTTP_304
HTTP_USE_PROXY = HTTP_305
HTTP_TEMPORARY_REDIRECT = HTTP_307
HTTP_PERMANENT_REDIRECT = HTTP_308

HTTP_300 = '300 Multiple Choices'
HTTP_301 = '301 Moved Permanently'
HTTP_302 = '302 Found'
HTTP_303 = '303 See Other'
HTTP_304 = '304 Not Modified'
HTTP_305 = '305 Use Proxy'
HTTP_307 = '307 Temporary Redirect'
HTTP_308 = '308 Permanent Redirect'

4xx Client Error

HTTP_BAD_REQUEST = HTTP_400
HTTP_UNAUTHORIZED = HTTP_401 # <-- Really means "unauthenticated"
HTTP_PAYMENT_REQUIRED = HTTP_402
HTTP_FORBIDDEN = HTTP_403 # <-- Really means "unauthorized"
HTTP_NOT_FOUND = HTTP_404
HTTP_METHOD_NOT_ALLOWED = HTTP_405
HTTP_NOT_ACCEPTABLE = HTTP_406
HTTP_PROXY_AUTHENTICATION_REQUIRED = HTTP_407

(continues on next page)

5.4. Framework Reference 185

Falcon Documentation, Release 3.0.1

(continued from previous page)

HTTP_REQUEST_TIMEOUT = HTTP_408
HTTP_CONFLICT = HTTP_409
HTTP_GONE = HTTP_410
HTTP_LENGTH_REQUIRED = HTTP_411
HTTP_PRECONDITION_FAILED = HTTP_412
HTTP_REQUEST_ENTITY_TOO_LARGE = HTTP_413
HTTP_REQUEST_URI_TOO_LONG = HTTP_414
HTTP_UNSUPPORTED_MEDIA_TYPE = HTTP_415
HTTP_REQUESTED_RANGE_NOT_SATISFIABLE = HTTP_416
HTTP_EXPECTATION_FAILED = HTTP_417
HTTP_IM_A_TEAPOT = HTTP_418
HTTP_UNPROCESSABLE_ENTITY = HTTP_422
HTTP_LOCKED = HTTP_423
HTTP_FAILED_DEPENDENCY = HTTP_424
HTTP_UPGRADE_REQUIRED = HTTP_426
HTTP_PRECONDITION_REQUIRED = HTTP_428
HTTP_TOO_MANY_REQUESTS = HTTP_429
HTTP_REQUEST_HEADER_FIELDS_TOO_LARGE = HTTP_431
HTTP_UNAVAILABLE_FOR_LEGAL_REASONS = HTTP_451

HTTP_400 = '400 Bad Request'
HTTP_401 = '401 Unauthorized' # <-- Really means "unauthenticated"
HTTP_402 = '402 Payment Required'
HTTP_403 = '403 Forbidden' # <-- Really means "unauthorized"
HTTP_404 = '404 Not Found'
HTTP_405 = '405 Method Not Allowed'
HTTP_406 = '406 Not Acceptable'
HTTP_407 = '407 Proxy Authentication Required'
HTTP_408 = '408 Request Timeout'
HTTP_409 = '409 Conflict'
HTTP_410 = '410 Gone'
HTTP_411 = '411 Length Required'
HTTP_412 = '412 Precondition Failed'
HTTP_413 = '413 Payload Too Large'
HTTP_414 = '414 URI Too Long'
HTTP_415 = '415 Unsupported Media Type'
HTTP_416 = '416 Range Not Satisfiable'
HTTP_417 = '417 Expectation Failed'
HTTP_418 = "418 I'm a teapot"
HTTP_422 = "422 Unprocessable Entity"
HTTP_423 = '423 Locked'
HTTP_424 = '424 Failed Dependency'
HTTP_426 = '426 Upgrade Required'
HTTP_428 = '428 Precondition Required'
HTTP_429 = '429 Too Many Requests'
HTTP_431 = '431 Request Header Fields Too Large'
HTTP_451 = '451 Unavailable For Legal Reasons'

186 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

5xx Server Error

HTTP_INTERNAL_SERVER_ERROR = HTTP_500
HTTP_NOT_IMPLEMENTED = HTTP_501
HTTP_BAD_GATEWAY = HTTP_502
HTTP_SERVICE_UNAVAILABLE = HTTP_503
HTTP_GATEWAY_TIMEOUT = HTTP_504
HTTP_HTTP_VERSION_NOT_SUPPORTED = HTTP_505
HTTP_INSUFFICIENT_STORAGE = HTTP_507
HTTP_LOOP_DETECTED = HTTP_508
HTTP_NETWORK_AUTHENTICATION_REQUIRED = HTTP_511

HTTP_500 = '500 Internal Server Error'
HTTP_501 = '501 Not Implemented'
HTTP_502 = '502 Bad Gateway'
HTTP_503 = '503 Service Unavailable'
HTTP_504 = '504 Gateway Timeout'
HTTP_505 = '505 HTTP Version Not Supported'
HTTP_507 = '507 Insufficient Storage'
HTTP_508 = '508 Loop Detected'
HTTP_511 = '511 Network Authentication Required'

5.4.6 Error Handling

• Base Class

• Predefined Errors

When it comes to error handling, you can always directly set the error status, appropriate response headers, and error
body using the resp object. However, Falcon tries to make things a little easier by providing a set of error classes
you can raise when something goes wrong. All of these classes inherit from HTTPError.

Falcon will convert any instance or subclass of HTTPError raised by a responder, hook, or middleware component
into an appropriate HTTP response. The default error serializer supports both JSON and XML. If the client indicates
acceptance of both JSON and XML with equal weight, JSON will be chosen. Other media types may be supported by
overriding the default serializer via set_error_serializer().

Note: If a custom media type is used and the type includes a “+json” or “+xml” suffix, the default serializer will
convert the error to JSON or XML, respectively.

To customize what data is passed to the serializer, subclass HTTPError or any of its child classes, and override the
to_dict() method. To also support XML, override the to_xml() method. For example:

class HTTPNotAcceptable(falcon.HTTPNotAcceptable):

def __init__(self, acceptable):
description = (

'Please see "acceptable" for a list of media types '
'and profiles that are currently supported.'

)

super().__init__(description=description)
(continues on next page)

5.4. Framework Reference 187

Falcon Documentation, Release 3.0.1

(continued from previous page)

self._acceptable = acceptable

def to_dict(self, obj_type=dict):
result = super().to_dict(obj_type)
result['acceptable'] = self._acceptable
return result

All classes are available directly in the falcon package namespace:

WSGI

ASGI

import falcon

class MessageResource:
def on_get(self, req, resp):

-- snip --

raise falcon.HTTPBadRequest(
title="TTL Out of Range",
description="The message's TTL must be between 60 and 300 seconds,

→˓inclusive."
)

-- snip --

import falcon

class MessageResource:
async def on_get(self, req, resp):

-- snip --

raise falcon.HTTPBadRequest(
title="TTL Out of Range",
description="The message's TTL must be between 60 and 300 seconds,

→˓inclusive."
)

-- snip --

Note also that any exception (not just instances of HTTPError) can be caught, logged, and otherwise handled at the
global level by registering one or more custom error handlers. See also add_error_handler() to learn more
about this feature.

Note: By default, any uncaught exceptions will return an HTTP 500 response and log details of the exception to
wsgi.errors.

188 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

Base Class

class falcon.HTTPError(status, title=None, description=None, headers=None, href=None,
href_text=None, code=None)

Represents a generic HTTP error.

Raise an instance or subclass of HTTPError to have Falcon return a formatted error response and an appropri-
ate HTTP status code to the client when something goes wrong. JSON and XML media types are supported by
default.

To customize the error presentation, implement a custom error serializer and set it on the App instance via
set_error_serializer().

To customize what data is passed to the serializer, subclass HTTPError and override the to_dict() method
(to_json() is implemented via to_dict()). To also support XML, override the to_xml() method.

Note: status is the only positional argument allowed, the other arguments should be used as keyword only.
Using them as positional arguments will raise a deprecation warning and will result in an error in a future version
of falcon.

Parameters status (str) – HTTP status code and text, such as “400 Bad Request”

Keyword Arguments

• title (str) – Human-friendly error title. If not provided, defaults to the HTTP status line
as determined by the status argument.

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two (default None).

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘App documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

status
HTTP status line, e.g. ‘748 Confounded by Ponies’.

Type str

title
Error title to send to the client.

5.4. Framework Reference 189

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Type str

description
Description of the error to send to the client.

Type str

headers
Extra headers to add to the response.

Type dict

link
An href that the client can provide to the user for getting help.

Type str

code
An internal application code that a user can reference when requesting support for the error.

Type int

to_dict(obj_type=<class 'dict'>)
Return a basic dictionary representing the error.

This method can be useful when serializing the error to hash-like media types, such as YAML, JSON, and
MessagePack.

Parameters obj_type – A dict-like type that will be used to store the error information (de-
fault dict).

Returns A dictionary populated with the error’s title, description, etc.

Return type dict

to_json(handler=None)
Return a JSON representation of the error.

Parameters handler – Handler object that will be used to serialize the representation of this
error to JSON. When not provided, a default handler using the builtin JSON library will be
used (default None).

Returns A JSON document for the error.

Return type bytes

to_xml()
Return an XML-encoded representation of the error.

Returns An XML document for the error.

Return type bytes

Predefined Errors

class falcon.HTTPBadRequest(title=None, description=None, headers=None, **kwargs)
400 Bad Request.

The server cannot or will not process the request due to something that is perceived to be a client error (e.g.,
malformed request syntax, invalid request message framing, or deceptive request routing).

(See also: RFC 7231, Section 6.5.1)

190 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://tools.ietf.org/html/rfc7231#section-6.5.1

Falcon Documentation, Release 3.0.1

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘400 Bad Request’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPInvalidHeader(msg, header_name, headers=None, **kwargs)
400 Bad Request.

One of the headers in the request is invalid.

Note: msg and header_name are the only positional argument allowed, the other arguments should be
passed as keyword only. Using them as positional arguments will raise a deprecation warning and will result in
an error in a future version of falcon.

Parameters

• msg (str) – A description of why the value is invalid.

• header_name (str) – The name of the invalid header.

Keyword Arguments

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to

5.4. Framework Reference 191

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Falcon Documentation, Release 3.0.1

convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPMissingHeader(header_name, headers=None, **kwargs)
400 Bad Request.

A header is missing from the request.

Note: header_name is the only positional argument allowed, the other arguments should be passed as
keyword only. Using them as positional arguments will raise a deprecation warning and will result in an error
in a future version of falcon.

Parameters header_name (str) – The name of the missing header.

Keyword Arguments

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPInvalidParam(msg, param_name, headers=None, **kwargs)
400 Bad Request.

A parameter in the request is invalid. This error may refer to a parameter in a query string, form, or document
that was submitted with the request.

192 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

Note: msg and param_name are the only positional argument allowed, the other arguments should be passed
as keyword only. Using them as positional arguments will raise a deprecation warning and will result in an error
in a future version of falcon.

Parameters

• msg (str) – A description of the invalid parameter.

• param_name (str) – The name of the parameter.

Keyword Arguments

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPMissingParam(param_name, headers=None, **kwargs)
400 Bad Request.

A parameter is missing from the request. This error may refer to a parameter in a query string, form, or document
that was submitted with the request.

Note: param_name is the only positional argument allowed, the other arguments should be passed as keyword
only. Using them as positional arguments will raise a deprecation warning and will result in an error in a future
version of falcon.

Parameters param_name (str) – The name of the missing parameter.

Keyword Arguments

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to

5.4. Framework Reference 193

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Falcon Documentation, Release 3.0.1

convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPUnauthorized(title=None, description=None, headers=None, challenges=None,
**kwargs)

401 Unauthorized.

The request has not been applied because it lacks valid authentication credentials for the target resource.

The server generating a 401 response MUST send a WWW-Authenticate header field containing at least one
challenge applicable to the target resource.

If the request included authentication credentials, then the 401 response indicates that authorization has been
refused for those credentials. The user agent MAY repeat the request with a new or replaced Authorization
header field. If the 401 response contains the same challenge as the prior response, and the user agent has
already attempted authentication at least once, then the user agent SHOULD present the enclosed representation
to the user, since it usually contains relevant diagnostic information.

(See also: RFC 7235, Section 3.1)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘401 Unauthorized’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• challenges (iterable of str) – One or more authentication challenges to use as
the value of the WWW-Authenticate header in the response.

194 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7235#section-3.1
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Falcon Documentation, Release 3.0.1

Note: The existing value of the WWW-Authenticate in headers will be overridden by this
value

(See also: RFC 7235, Section 2.1)

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPForbidden(title=None, description=None, headers=None, **kwargs)
403 Forbidden.

The server understood the request but refuses to authorize it.

A server that wishes to make public why the request has been forbidden can describe that reason in the response
payload (if any).

If authentication credentials were provided in the request, the server considers them insufficient to grant access.
The client SHOULD NOT automatically repeat the request with the same credentials. The client MAY repeat
the request with new or different credentials. However, a request might be forbidden for reasons unrelated to the
credentials.

An origin server that wishes to “hide” the current existence of a forbidden target resource MAY instead respond
with a status code of 404 Not Found.

(See also: RFC 7231, Section 6.5.4)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘403 Forbidden’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

5.4. Framework Reference 195

https://tools.ietf.org/html/rfc7235#section-2.1
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7231#section-6.5.4
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPNotFound(title=None, description=None, headers=None, **kwargs)
404 Not Found.

The origin server did not find a current representation for the target resource or is not willing to disclose that
one exists.

A 404 status code does not indicate whether this lack of representation is temporary or permanent; the 410 Gone
status code is preferred over 404 if the origin server knows, presumably through some configurable means, that
the condition is likely to be permanent.

A 404 response is cacheable by default; i.e., unless otherwise indicated by the method definition or explicit
cache controls.

(See also: RFC 7231, Section 6.5.3)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Human-friendly error title. If not provided, and description is also not
provided, no body will be included in the response.

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two (default None).

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPRouteNotFound(title=None, description=None, headers=None, **kwargs)
404 Not Found.

The request did not match any routes configured for the application.

196 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7231#section-6.5.3
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

This subclass of HTTPNotFound is raised by the framework to provide a default 404 response when no
route matches the request. This behavior can be customized by registering a custom error handler for
HTTPRouteNotFound.

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Human-friendly error title. If not provided, and description is also not
provided, no body will be included in the response.

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two (default None).

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPMethodNotAllowed(allowed_methods, title=None, description=None, head-
ers=None, **kwargs)

405 Method Not Allowed.

The method received in the request-line is known by the origin server but not supported by the target resource.

The origin server MUST generate an Allow header field in a 405 response containing a list of the target re-
source’s currently supported methods.

A 405 response is cacheable by default; i.e., unless otherwise indicated by the method definition or explicit
cache controls.

(See also: RFC 7231, Section 6.5.5)

Note: allowed_methods is the only positional argument allowed, the other arguments should be passed as
keyword only. Using them as positional arguments will raise a deprecation warning and will result in an error
in a future version of falcon.

5.4. Framework Reference 197

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7231#section-6.5.5

Falcon Documentation, Release 3.0.1

Parameters allowed_methods (list of str) – Allowed HTTP methods for this resource
(e.g., ['GET', 'POST', 'HEAD']).

Note: If previously set, the Allow response header will be overridden by this value.

Keyword Arguments

• title (str) – Human-friendly error title. If not provided, and description is also not
provided, no body will be included in the response.

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two (default None).

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPNotAcceptable(title=None, description=None, headers=None, **kwargs)
406 Not Acceptable.

The target resource does not have a current representation that would be acceptable to the user agent, according
to the proactive negotiation header fields received in the request, and the server is unwilling to supply a default
representation.

The server SHOULD generate a payload containing a list of available representation characteristics and corre-
sponding resource identifiers from which the user or user agent can choose the one most appropriate. A user
agent MAY automatically select the most appropriate choice from that list. However, this specification does not
define any standard for such automatic selection, as described in RFC 7231, Section 6.4.1

(See also: RFC 7231, Section 6.5.6)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

198 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7231#section-6.4.1
https://tools.ietf.org/html/rfc7231#section-6.5.6
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPConflict(title=None, description=None, headers=None, **kwargs)
409 Conflict.

The request could not be completed due to a conflict with the current state of the target resource. This code is
used in situations where the user might be able to resolve the conflict and resubmit the request.

The server SHOULD generate a payload that includes enough information for a user to recognize the source of
the conflict.

Conflicts are most likely to occur in response to a PUT request. For example, if versioning were being used
and the representation being PUT included changes to a resource that conflict with those made by an earlier
(third-party) request, the origin server might use a 409 response to indicate that it can’t complete the request. In
this case, the response representation would likely contain information useful for merging the differences based
on the revision history.

(See also: RFC 7231, Section 6.5.8)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘409 Conflict’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

5.4. Framework Reference 199

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7231#section-6.5.8
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Falcon Documentation, Release 3.0.1

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPGone(title=None, description=None, headers=None, **kwargs)
410 Gone.

The target resource is no longer available at the origin server and this condition is likely to be permanent.

If the origin server does not know, or has no facility to determine, whether or not the condition is permanent,
the status code 404 Not Found ought to be used instead.

The 410 response is primarily intended to assist the task of web maintenance by notifying the recipient that
the resource is intentionally unavailable and that the server owners desire that remote links to that resource
be removed. Such an event is common for limited-time, promotional services and for resources belonging
to individuals no longer associated with the origin server’s site. It is not necessary to mark all permanently
unavailable resources as “gone” or to keep the mark for any length of time – that is left to the discretion of the
server owner.

A 410 response is cacheable by default; i.e., unless otherwise indicated by the method definition or explicit
cache controls.

(See also: RFC 7231, Section 6.5.9)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Human-friendly error title. If not provided, and description is also not
provided, no body will be included in the response.

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two (default None).

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

200 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7231#section-6.5.9
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Falcon Documentation, Release 3.0.1

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPLengthRequired(title=None, description=None, headers=None, **kwargs)
411 Length Required.

The server refuses to accept the request without a defined Content- Length.

The client MAY repeat the request if it adds a valid Content-Length header field containing the length of the
message body in the request message.

(See also: RFC 7231, Section 6.5.10)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘411 Length Required’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPPreconditionFailed(title=None, description=None, headers=None,
**kwargs)

412 Precondition Failed.

One or more conditions given in the request header fields evaluated to false when tested on the server.

5.4. Framework Reference 201

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7231#section-6.5.10
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

This response code allows the client to place preconditions on the current resource state (its current represen-
tations and metadata) and, thus, prevent the request method from being applied if the target resource is in an
unexpected state.

(See also: RFC 7232, Section 4.2)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘412 Precondition Failed’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPPayloadTooLarge(title=None, description=None, retry_after=None, head-
ers=None, **kwargs)

413 Payload Too Large.

The server is refusing to process a request because the request payload is larger than the server is willing or able
to process.

The server MAY close the connection to prevent the client from continuing the request.

If the condition is temporary, the server SHOULD generate a Retry- After header field to indicate that it is
temporary and after what time the client MAY try again.

(See also: RFC 7231, Section 6.5.11)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

202 Chapter 5. Documentation

https://tools.ietf.org/html/rfc7232#section-4.2
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7231#section-6.5.11

Falcon Documentation, Release 3.0.1

• title (str) – Error title (default ‘413 Payload Too Large’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• retry_after (datetime or int) – Value for the Retry-After header. If a
datetime object, will serialize as an HTTP date. Otherwise, a non-negative int is ex-
pected, representing the number of seconds to wait.

Note: The existing value of the Retry-After in headers will be overridden by this value

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPUriTooLong(title=None, description=None, headers=None, **kwargs)
414 URI Too Long.

The server is refusing to service the request because the request- target is longer than the server is willing to
interpret.

This rare condition is only likely to occur when a client has improperly converted a POST request to a GET
request with long query information, when the client has descended into a “black hole” of redirection (e.g., a
redirected URI prefix that points to a suffix of itself) or when the server is under attack by a client attempting to
exploit potential security holes.

A 414 response is cacheable by default; i.e., unless otherwise indicated by the method definition or explicit
cache controls.

(See also: RFC 7231, Section 6.5.12)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘414 URI Too Long’).

5.4. Framework Reference 203

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7231#section-6.5.12
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two (default None).

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPUnsupportedMediaType(title=None, description=None, headers=None,
**kwargs)

415 Unsupported Media Type.

The origin server is refusing to service the request because the payload is in a format not supported by this
method on the target resource.

The format problem might be due to the request’s indicated Content- Type or Content-Encoding, or as a result
of inspecting the data directly.

(See also: RFC 7231, Section 6.5.13)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘415 Unsupported Media Type’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

204 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7231#section-6.5.13
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Falcon Documentation, Release 3.0.1

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPRangeNotSatisfiable(resource_length, title=None, description=None, head-
ers=None, **kwargs)

416 Range Not Satisfiable.

None of the ranges in the request’s Range header field overlap the current extent of the selected resource or that
the set of ranges requested has been rejected due to invalid ranges or an excessive request of small or overlapping
ranges.

For byte ranges, failing to overlap the current extent means that the first-byte-pos of all of the byte-range-spec
values were greater than the current length of the selected representation. When this status code is generated
in response to a byte-range request, the sender SHOULD generate a Content-Range header field specifying the
current length of the selected representation.

(See also: RFC 7233, Section 4.4)

Note: resource_length is the only positional argument allowed, the other arguments should be passed as
keyword only. Using them as positional arguments will raise a deprecation warning and will result in an error
in a future version of falcon.

Parameters resource_length – The maximum value for the last-byte-pos of a range request.
Used to set the Content-Range header.

Note: The existing value of the Content-Range in headers will be overridden by this value

Keyword Arguments

• title (str) – Error title (default ‘416 Range Not Satisfiable’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

5.4. Framework Reference 205

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7233#section-4.4
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Falcon Documentation, Release 3.0.1

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPUnprocessableEntity(title=None, description=None, headers=None,
**kwargs)

422 Unprocessable Entity.

The server understands the content type of the request entity (hence a 415 Unsupported Media Type status
code is inappropriate), and the syntax of the request entity is correct (thus a 400 Bad Request status code is
inappropriate) but was unable to process the contained instructions.

For example, this error condition may occur if an XML request body contains well-formed (i.e., syntactically
correct), but semantically erroneous, XML instructions.

(See also: RFC 4918, Section 11.2)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘422 Unprocessable Entity’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPLocked(title=None, description=None, headers=None, **kwargs)
423 Locked.

206 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc4918#section-11.2
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

The 423 (Locked) status code means the source or destination resource of a method is locked. This response
SHOULD contain an appropriate precondition or postcondition code, such as ‘lock-token-submitted’ or ‘no-
conflicting-lock’.

(See also: RFC 4918, Section 11.3)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘423 Locked’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPFailedDependency(title=None, description=None, headers=None, **kwargs)
424 Failed Dependency.

The 424 (Failed Dependency) status code means that the method could not be performed on the resource because
the requested action depended on another action and that action failed.

(See also: RFC 4918, Section 11.4)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘424 Failed Dependency’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

5.4. Framework Reference 207

https://tools.ietf.org/html/rfc4918#section-11.3
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc4918#section-11.4
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPPreconditionRequired(title=None, description=None, headers=None,
**kwargs)

428 Precondition Required.

The 428 status code indicates that the origin server requires the request to be conditional.

Its typical use is to avoid the “lost update” problem, where a client GETs a resource’s state, modifies it, and
PUTs it back to the server, when meanwhile a third party has modified the state on the server, leading to a
conflict. By requiring requests to be conditional, the server can assure that clients are working with the correct
copies.

Responses using this status code SHOULD explain how to resubmit the request successfully.

(See also: RFC 6585, Section 3)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘428 Precondition Required’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

208 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc6585#section-3
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Falcon Documentation, Release 3.0.1

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPTooManyRequests(title=None, description=None, headers=None,
retry_after=None, **kwargs)

429 Too Many Requests.

The user has sent too many requests in a given amount of time (“rate limiting”).

The response representations SHOULD include details explaining the condition, and MAY include a Retry-After
header indicating how long to wait before making a new request.

Responses with the 429 status code MUST NOT be stored by a cache.

(See also: RFC 6585, Section 4)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘429 Too Many Requests’).

• description (str) – Human-friendly description of the rate limit that was exceeded.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• retry_after (datetime or int) – Value for the Retry-After header. If a
datetime object, will serialize as an HTTP date. Otherwise, a non-negative int is ex-
pected, representing the number of seconds to wait.

Note: The existing value of the Retry-After in headers will be overridden by this value

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

5.4. Framework Reference 209

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc6585#section-4
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPRequestHeaderFieldsTooLarge(title=None, description=None, head-
ers=None, **kwargs)

431 Request Header Fields Too Large.

The 431 status code indicates that the server is unwilling to process the request because its header fields are too
large. The request MAY be resubmitted after reducing the size of the request header fields.

It can be used both when the set of request header fields in total is too large, and when a single header field is at
fault. In the latter case, the response representation SHOULD specify which header field was too large.

Responses with the 431 status code MUST NOT be stored by a cache.

(See also: RFC 6585, Section 5)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘431 Request Header Fields Too Large’).

• description (str) – Human-friendly description of the rate limit that was exceeded.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPUnavailableForLegalReasons(title=None, description=None, head-
ers=None, **kwargs)

451 Unavailable For Legal Reasons.

The server is denying access to the resource as a consequence of a legal demand.

The server in question might not be an origin server. This type of legal demand typically most directly affects
the operations of ISPs and search engines.

210 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc6585#section-5
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

Responses using this status code SHOULD include an explanation, in the response body, of the details of the
legal demand: the party making it, the applicable legislation or regulation, and what classes of person and
resource it applies to.

Note that in many cases clients can still access the denied resource by using technical countermeasures such as
a VPN or the Tor network.

A 451 response is cacheable by default; i.e., unless otherwise indicated by the method definition or explicit
cache controls.

(See also: RFC 7725, Section 3)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘451 Unavailable For Legal Reasons’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two (default None).

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPInternalServerError(title=None, description=None, headers=None,
**kwargs)

500 Internal Server Error.

The server encountered an unexpected condition that prevented it from fulfilling the request.

(See also: RFC 7231, Section 6.6.1)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

5.4. Framework Reference 211

https://tools.ietf.org/html/rfc7725#section-3
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7231#section-6.6.1

Falcon Documentation, Release 3.0.1

• title (str) – Error title (default ‘500 Internal Server Error’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPNotImplemented(title=None, description=None, headers=None, **kwargs)
501 Not Implemented.

The 501 (Not Implemented) status code indicates that the server does not support the functionality required to
fulfill the request. This is the appropriate response when the server does not recognize the request method and
is not capable of supporting it for any resource.

A 501 response is cacheable by default; i.e., unless otherwise indicated by the method definition or explicit
cache controls as described in RFC 7234, Section 4.2.2.

(See also: RFC 7231, Section 6.6.2)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘500 Internal Server Error’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

212 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7234#section-4.2.2.
https://tools.ietf.org/html/rfc7231#section-6.6.2
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Falcon Documentation, Release 3.0.1

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPBadGateway(title=None, description=None, headers=None, **kwargs)
502 Bad Gateway.

The server, while acting as a gateway or proxy, received an invalid response from an inbound server it accessed
while attempting to fulfill the request.

(See also: RFC 7231, Section 6.6.3)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘502 Bad Gateway’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPServiceUnavailable(title=None, description=None, headers=None,
retry_after=None, **kwargs)

503 Service Unavailable.

The server is currently unable to handle the request due to a temporary overload or scheduled maintenance,
which will likely be alleviated after some delay.

5.4. Framework Reference 213

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7231#section-6.6.3
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

The server MAY send a Retry-After header field to suggest an appropriate amount of time for the client to wait
before retrying the request.

Note: The existence of the 503 status code does not imply that a server has to use it when becoming overloaded.
Some servers might simply refuse the connection.

(See also: RFC 7231, Section 6.6.4)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘503 Service Unavailable’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• retry_after (datetime or int) – Value for the Retry-After header. If a
datetime object, will serialize as an HTTP date. Otherwise, a non-negative int is ex-
pected, representing the number of seconds to wait.

Note: The existing value of the Retry-After in headers will be overridden by this value

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPGatewayTimeout(title=None, description=None, headers=None, **kwargs)
504 Gateway Timeout.

The 504 (Gateway Timeout) status code indicates that the server, while acting as a gateway or proxy, did not
receive a timely response from an upstream server it needed to access in order to complete the request.

(See also: RFC 7231, Section 6.6.5)

214 Chapter 5. Documentation

https://tools.ietf.org/html/rfc7231#section-6.6.4
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7231#section-6.6.5

Falcon Documentation, Release 3.0.1

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘503 Service Unavailable’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPVersionNotSupported(title=None, description=None, headers=None,
**kwargs)

505 HTTP Version Not Supported.

The 505 (HTTP Version Not Supported) status code indicates that the server does not support, or refuses to
support, the major version of HTTP that was used in the request message. The server is indicating that it is
unable or unwilling to complete the request using the same major version as the client (as described in RFC
7230, Section 2.6), other than with this error message. The server SHOULD generate a representation for the
505 response that describes why that version is not supported and what other protocols are supported by that
server.

(See also: RFC 7231, Section 6.6.6)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘503 Service Unavailable’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

5.4. Framework Reference 215

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc7230#section-2.6
https://tools.ietf.org/html/rfc7230#section-2.6
https://tools.ietf.org/html/rfc7231#section-6.6.6
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPInsufficientStorage(title=None, description=None, headers=None,
**kwargs)

507 Insufficient Storage.

The 507 (Insufficient Storage) status code means the method could not be performed on the resource because
the server is unable to store the representation needed to successfully complete the request. This condition is
considered to be temporary. If the request that received this status code was the result of a user action, the
request MUST NOT be repeated until it is requested by a separate user action.

(See also: RFC 4918, Section 11.5)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘507 Insufficient Storage’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

216 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc4918#section-11.5
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Falcon Documentation, Release 3.0.1

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPLoopDetected(title=None, description=None, headers=None, **kwargs)
508 Loop Detected.

The 508 (Loop Detected) status code indicates that the server terminated an operation because it encountered
an infinite loop while processing a request with “Depth: infinity”. This status indicates that the entire operation
failed.

(See also: RFC 5842, Section 7.2)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘508 Loop Detected’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.HTTPNetworkAuthenticationRequired(title=None, description=None, head-
ers=None, **kwargs)

511 Network Authentication Required.

The 511 status code indicates that the client needs to authenticate to gain network access.

The response representation SHOULD contain a link to a resource that allows the user to submit credentials.

5.4. Framework Reference 217

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc5842#section-7.2
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

Note that the 511 response SHOULD NOT contain a challenge or the authentication interface itself, because
clients would show the interface as being associated with the originally requested URL, which may cause con-
fusion.

The 511 status SHOULD NOT be generated by origin servers; it is intended for use by intercepting proxies that
are interposed as a means of controlling access to the network.

Responses with the 511 status code MUST NOT be stored by a cache.

(See also: RFC 6585, Section 6)

Note: All the arguments should be passed as keyword only. Using them as positional arguments will raise a
deprecation warning and will result in an error in a future version of falcon.

Keyword Arguments

• title (str) – Error title (default ‘511 Network Authentication Required’).

• description (str) – Human-friendly description of the error, along with a helpful sug-
gestion or two.

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.MediaNotFoundError(media_type, **kwargs)
400 Bad Request.

Exception raised by a media handler when trying to parse an empty body.

Note: Some media handlers, like the one for URL-encoded forms, allow an empty body. In these cases this
exception will not be raised.

Parameters media_type (str) – The media type that was expected.

Keyword Arguments

218 Chapter 5. Documentation

https://tools.ietf.org/html/rfc6585#section-6
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

class falcon.MediaMalformedError(media_type, **kwargs)
400 Bad Request.

Exception raised by a media handler when trying to parse a malformed body. The cause of this exception, if
any, is stored in the __cause__ attribute using the “raise . . . from” form when raising.

Parameters media_type (str) – The media type that was expected.

Keyword Arguments

• headers (dict or list) – A dict of header names and values to set, or a list of
(name, value) tuples. Both name and value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that use wide characters.

Note: The Content-Type header, if present, will be overridden. If you wish to return custom
error messages, you can create your own HTTP error class, and install an error handler to
convert it into an appropriate HTTP response for the client

Note: Falcon can process a list of tuple slightly faster than a dict.

• href (str) – A URL someone can visit to find out more information (default None).
Unicode characters are percent-encoded.

• href_text (str) – If href is given, use this as the friendly title/description for the link
(default ‘API documentation for this error’).

• code (int) – An internal code that customers can reference in their support request or to
help them when searching for knowledge base articles related to this error (default None).

5.4. Framework Reference 219

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

5.4.7 Media

• Usage

• Validating Media

• Content-Type Negotiation

• Exception Handling

• Replacing the Default Handlers

• Supported Handler Types

• Custom Handler Type

• Handlers Mapping

• Media Type Constants

Falcon allows for easy and customizable internet media type handling. By default Falcon only enables handlers for
JSON and HTML (URL-encoded and multipart) forms. However, additional handlers can be configured through the
falcon.RequestOptions and falcon.ResponseOptions objects specified on your falcon.App.

Note: WebSocket media is handled differently from regular HTTP requests. For information regarding WebSocket
media handlers, please see: Media Handlers in the WebSocket section.

Usage

Zero configuration is needed if you’re creating a JSON API. Simply use get_media() and media (WSGI) , or
get_media() and media (ASGI) to let Falcon do the heavy lifting for you.

WSGI

ASGI

import falcon

class EchoResource:
def on_post(self, req, resp):

Deserialize the request body based on the Content-Type
header in the request, or the default media type
when the Content-Type header is generic ('*/*') or
missing.
obj = req.get_media()

message = obj.get('message')

The framework will look for a media handler that matches
the response's Content-Type header, or fall back to the
default media type (typically JSON) when the app does
not explicitly set the Content-Type header.
resp.media = {'message': message}
resp.status = falcon.HTTP_200

220 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

import falcon

class EchoResource:
async def on_post(self, req, resp):

Deserialize the request body. Note that the ASGI version
of this method must be awaited.
obj = await req.get_media()

message = obj.get('message')

The framework will look for a media handler that matches
the response's Content-Type header, or fall back to the
default media type (typically JSON) when the app does
not explicitly set the Content-Type header.
resp.media = {'message': message}
resp.status = falcon.HTTP_200

Warning: Once falcon.Request.get_media() or falcon.asgi.Request.get_media() is
called on a request, it will consume the request’s body stream. To avoid unnecessary overhead, Falcon will only
process request media the first time it is referenced. Subsequent interactions will use a cached object.

Validating Media

Falcon currently only provides a JSON Schema media validator; however, JSON Schema is very versatile and can be
used to validate any deserialized media type that JSON also supports (i.e. dicts, lists, etc).

falcon.media.validators.jsonschema.validate(req_schema=None, resp_schema=None,
is_async=False)

Validate req.media using JSON Schema.

This decorator provides standard JSON Schema validation via the jsonschema package available from PyPI.
Semantic validation via the format keyword is enabled for the default checkers implemented by jsonschema.
FormatChecker.

Note: The jsonschema` package must be installed separately in order to use this decorator, as Falcon does not
install it by default.

See json-schema.org for more information on defining a compatible dictionary.

Keyword Arguments

• req_schema (dict) – A dictionary that follows the JSON Schema specification. The
request will be validated against this schema.

• resp_schema (dict) – A dictionary that follows the JSON Schema specification. The
response will be validated against this schema.

• is_async (bool) – Set to True for ASGI apps to provide a hint that the decorated
responder is a coroutine function (i.e., that it is defined with async def) or that it returns
an awaitable coroutine object.

Normally, when the function source is declared using async def, the resulting function
object is flagged to indicate it returns a coroutine when invoked, and this can be automat-

5.4. Framework Reference 221

http://json-schema.org/
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

ically detected. However, it is possible to use a regular function to return an awaitable
coroutine object, in which case a hint is required to let the framework know what to expect.
Also, a hint is always required when using a cythonized coroutine function, since Cython
does not flag them in a way that can be detected in advance, even when the function is
declared using async def.

Example

WSGI

ASGI

ASGI (Cythonized App)

from falcon.media.validators import jsonschema

-- snip --

@jsonschema.validate(my_post_schema)
def on_post(self, req, resp):

-- snip --

from falcon.media.validators import jsonschema

-- snip --

@jsonschema.validate(my_post_schema)
async def on_post(self, req, resp):

-- snip --

from falcon.media.validators import jsonschema

-- snip --

@jsonschema.validate(my_post_schema, is_async=True)
async def on_post(self, req, resp):

-- snip --

If JSON Schema does not meet your needs, a custom validator may be implemented in a similar manner to the one
above.

Content-Type Negotiation

Falcon currently only supports partial negotiation out of the box. By default, when the get_media() method or the
media attribute is used, the framework attempts to (de)serialize based on the Content-Type header value. The
missing link that Falcon doesn’t provide is the connection between the Accept header provided by a user and the
Content-Type header set on the response.

If you do need full negotiation, it is very easy to bridge the gap using middleware. Here is an example of how this can
be done:

WSGI

ASGI

222 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

class NegotiationMiddleware:
def process_request(self, req, resp):

resp.content_type = req.accept

class NegotiationMiddleware:
async def process_request(self, req, resp):

resp.content_type = req.accept

Exception Handling

Version 3 of Falcon updated how the handling of exceptions raised by handlers behaves:

• Falcon lets the media handler try to deserialized an empty body. For the media types that don’t allow empty
bodies as a valid value, such as JSON, an instance of falcon.MediaNotFoundError should be raised.
By default, this error will be rendered as a 400 Bad Request response to the client. This exception
may be suppressed by passing a value to the default_when_empty argument when calling Request.
get_media(). In this case, this value will be returned by the call.

• If a handler encounters an error while parsing a non-empty body, an instance of falcon.
MediaMalformedError should be raised. The original exception, if any, is stored in the __cause__
attribute of the raised instance. By default, this error will be rendered as a 400 Bad Request response to
the client.

If any exception was raised by the handler while parsing the body, all subsequent invocations of Request.
get_media() or Request.media will result in a re-raise of the same exception, unless the exception was a
falcon.MediaNotFoundError and a default value is passed to the default_when_empty attribute of the
current invocation.

External handlers should update their logic to align to the internal Falcon handlers.

Replacing the Default Handlers

By default, the framework installs falcon.media.JSONHandler, falcon.media.
URLEncodedFormHandler, and falcon.media.MultipartFormHandler for the application/
json, application/x-www-form-urlencoded, and multipart/form-data media types, respectively.

When creating your App object you can either add or completely replace all of the handlers. For example, let’s say
you want to write an API that sends and receives MessagePack. We can easily do this by telling our Falcon API that
we want a default media type of application/msgpack, and then creating a new Handlers object to map that
media type to an appropriate handler.

The following example demonstrates how to replace the default handlers. Because Falcon provides a
MessagePackHandler that is not enabled by default, we use it in our examples below. However, you can al-
ways substitute a custom media handler as needed.

import falcon
from falcon import media

handlers = media.Handlers({
falcon.MEDIA_MSGPACK: media.MessagePackHandler(),

})

app = falcon.App(media_type=falcon.MEDIA_MSGPACK)

(continues on next page)

5.4. Framework Reference 223

https://msgpack.org/

Falcon Documentation, Release 3.0.1

(continued from previous page)

app.req_options.media_handlers = handlers
app.resp_options.media_handlers = handlers

Alternatively, you can simply update the existing Handlers object to retain the default handlers:

import falcon
from falcon import media

extra_handlers = {
falcon.MEDIA_MSGPACK: media.MessagePackHandler(),

}

app = falcon.App()

app.req_options.media_handlers.update(extra_handlers)
app.resp_options.media_handlers.update(extra_handlers)

The falcon module provides a number of constants for common media types. See also: Media Type Constants.

Note: The configured falcon.Response JSON handler is also used to serialize falcon.HTTPError and
the json attribute of falcon.asgi.SSEvent. The JSON handler configured in falcon.Request is used by
falcon.Request.get_param_as_json() to deserialize query params.

Therefore, when implementing a custom handler for the JSON media type, it is required that the sync interface
methods, meaning falcon.media.BaseHandler.serialize() and falcon.media.BaseHandler.
deserialize(), are implemented even in ASGI applications. The default JSON handler, falcon.media.
JSONHandler, already implements the methods required to work with both types of applications.

Supported Handler Types

class falcon.media.JSONHandler(dumps=None, loads=None)
JSON media handler.

This handler uses Python’s standard json library by default, but can be easily configured to use any of a
number of third-party JSON libraries, depending on your needs. For example, you can often realize a significant
performance boost under CPython by using an alternative library. Good options in this respect include orjson,
python-rapidjson, and mujson.

This handler will raise a falcon.MediaNotFoundError when attempting to parse an empty body, or a
falcon.MediaMalformedError if an error happens while parsing the body.

Note: If you are deploying to PyPy, we recommend sticking with the standard library’s JSON implementation,
since it will be faster in most cases as compared to a third-party library.

Overriding the default JSON implementation is simply a matter of specifying the desired dumps and loads
functions:

import falcon
from falcon import media

import rapidjson

(continues on next page)

224 Chapter 5. Documentation

https://docs.python.org/3/library/json.html#module-json

Falcon Documentation, Release 3.0.1

(continued from previous page)

json_handler = media.JSONHandler(
dumps=rapidjson.dumps,
loads=rapidjson.loads,

)
extra_handlers = {

'application/json': json_handler,
}

app = falcon.App()
app.req_options.media_handlers.update(extra_handlers)
app.resp_options.media_handlers.update(extra_handlers)

By default, ensure_ascii is passed to the json.dumps function. If you override the dumps function, you
will need to explicitly set ensure_ascii to False in order to enable the serialization of Unicode characters
to UTF-8. This is easily done by using functools.partial to apply the desired keyword argument. In
fact, you can use this same technique to customize any option supported by the dumps and loads functions:

from functools import partial

from falcon import media
import rapidjson

json_handler = media.JSONHandler(
dumps=partial(

rapidjson.dumps,
ensure_ascii=False, sort_keys=True

),
)

Keyword Arguments

• dumps (func) – Function to use when serializing JSON responses.

• loads (func) – Function to use when deserializing JSON requests.

class falcon.media.MessagePackHandler
Handler built using the msgpack module.

This handler uses msgpack.unpackb() and msgpack.Packer().pack(). The MessagePack bin
type is used to distinguish between Unicode strings (of type str) and byte strings (of type bytes).

This handler will raise a falcon.MediaNotFoundError when attempting to parse an empty body; it will
raise a falcon.MediaMalformedError if an error happens while parsing the body.

Note: This handler requires the extra msgpack package (version 0.5.2 or higher), which must be installed in
addition to falcon from PyPI:

$ pip install msgpack

class falcon.media.MultipartFormHandler(parse_options=None)
Multipart form (content type multipart/form-data) media handler.

The multipart/form-data media type for HTML5 forms is defined in RFC 7578.

The multipart media type itself is defined in RFC 2046 section 5.1.

5.4. Framework Reference 225

https://docs.python.org/3/library/functools.html#functools.partial
https://tools.ietf.org/html/rfc7578
https://tools.ietf.org/html/rfc2046#section-5.1

Falcon Documentation, Release 3.0.1

Note: Unlike many form parsing implementations in other frameworks, this handler does not consume the
stream immediately. Rather, the stream is consumed on-demand and parsed into individual body parts while
iterating over the media object.

For examples on parsing the request form, see also: Multipart Forms.

class falcon.media.URLEncodedFormHandler(keep_blank=True, csv=False)
URL-encoded form data handler.

This handler parses application/x-www-form-urlencoded HTML forms to a dict, similar to how
URL query parameters are parsed. An empty body will be parsed as an empty dict.

When deserializing, this handler will raise falcon.MediaMalformedError if the request payload cannot
be parsed as ASCII or if any of the URL-encoded strings in the payload are not valid UTF-8.

As documented for urllib.parse.urlencode, when serializing, the media object must either be a dict
or a sequence of two-element tuple’s. If any values in the media object are sequences, each sequence element
is converted to a separate parameter.

Keyword Arguments

• keep_blank (bool) – Whether to keep empty-string values from the form when deseri-
alizing.

• csv (bool) – Whether to split comma-separated form values into list when deserializing.

Custom Handler Type

If Falcon doesn’t have an Internet media type handler that supports your use case, you can easily implement your own
using the abstract base class provided by Falcon and documented below.

In general WSGI applications only use the sync methods, while ASGI applications only use the async one. The JSON
handled is an exception to this, since it’s used also by other parts of the framework, not only in the media handling.
See the note above for more details.

class falcon.media.BaseHandler
Abstract Base Class for an internet media type handler.

serialize(media, content_type)→ bytes
Serialize the media object on a falcon.Response.

By default, this method raises an instance of NotImplementedError. Therefore, it must be overridden
in order to work with WSGI apps. Child classes can ignore this method if they are only to be used with
ASGI apps, as long as they override serialize_async().

Note: The JSON media handler is an exception in requiring the implementation of the sync version also
for ASGI apps. See the this section for more details.

Parameters

• media (object) – A serializable object.

• content_type (str) – Type of response content.

Returns The resulting serialized bytes from the input object.

Return type bytes

226 Chapter 5. Documentation

https://docs.python.org/3/library/urllib.parse.html#urllib.parse.urlencode
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

Falcon Documentation, Release 3.0.1

async serialize_async(media, content_type)→ bytes
Serialize the media object on a falcon.Response.

This method is similar to serialize() except that it is asynchronous. The default implementation
simply calls serialize(). If the media object may be awaitable, or is otherwise something that should
be read asynchronously, subclasses must override the default implementation in order to handle that case.

Note: By default, the serialize() method raises an instance of NotImplementedError. There-
fore, child classes must either override serialize() or serialize_async() in order to be com-
patible with ASGI apps.

Parameters

• media (object) – A serializable object.

• content_type (str) – Type of response content.

Returns The resulting serialized bytes from the input object.

Return type bytes

deserialize(stream, content_type, content_length)→ object
Deserialize the falcon.Request body.

By default, this method raises an instance of NotImplementedError. Therefore, it must be overridden
in order to work with WSGI apps. Child classes can ignore this method if they are only to be used with
ASGI apps, as long as they override deserialize_async().

Note: The JSON media handler is an exception in requiring the implementation of the sync version also
for ASGI apps. See the this section for more details.

Parameters

• stream (object) – Readable file-like object to deserialize.

• content_type (str) – Type of request content.

• content_length (int) – Length of request content.

Returns A deserialized object.

Return type object

async deserialize_async(stream, content_type, content_length)→ object
Deserialize the falcon.Request body.

This method is similar to deserialize() except that it is asynchronous. The default implementation
adapts the synchronous deserialize() method via io.BytesIO. For improved performance, media
handlers should override this method.

Note: By default, the deserialize() method raises an instance of NotImplementedError.
Therefore, child classes must either override deserialize() or deserialize_async() in order
to be compatible with ASGI apps.

Parameters

5.4. Framework Reference 227

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/io.html#io.BytesIO
https://docs.python.org/3/library/exceptions.html#NotImplementedError

Falcon Documentation, Release 3.0.1

• stream (object) – Asynchronous file-like object to deserialize.

• content_type (str) – Type of request content.

• content_length (int) – Length of request content.

Returns A deserialized object.

Return type object

exhaust_stream = False
Whether to exhaust the input stream upon finishing deserialization.

Exhausting the stream may be useful for handlers that do not necessarily consume the whole stream, but
the deserialized media object is complete and does not involve further streaming.

Tip: In order to use your custom media handler in a Falcon app, you’ll have to add an instance of your class to the
app’s media handlers (specified in RequestOptions and ResponseOptions, respectively).

See also: Replacing the Default Handlers.

Handlers Mapping

class falcon.media.Handlers(initial=None)
A dict-like object that manages Internet media type handlers.

Media Type Constants

The falcon module provides a number of constants for common media type strings, including the following:

falcon.MEDIA_JSON
falcon.MEDIA_MSGPACK
falcon.MEDIA_MULTIPART
falcon.MEDIA_URLENCODED
falcon.MEDIA_YAML
falcon.MEDIA_XML
falcon.MEDIA_HTML
falcon.MEDIA_JS
falcon.MEDIA_TEXT
falcon.MEDIA_JPEG
falcon.MEDIA_PNG
falcon.MEDIA_GIF

5.4.8 Multipart Forms

• Body Part Type

• Parsing Options

• Parsing Errors

228 Chapter 5. Documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

Falcon features easy and efficient access to submitted multipart forms by using falcon.media.
MultipartFormHandler to handle the multipart/form-data media type. This handler is enabled by de-
fault, allowing you to use req.get_media() to iterate over the body parts in a form:

WSGI

ASGI

form = req.get_media()
for part in form:

if part.content_type == 'application/json':
Body part is a JSON document, do something useful with it
resp.media = part.get_media()

elif part.name == 'datafile':
while True:

Do something with the uploaded data (file)
chunk = part.stream.read(8192)
if not chunk:

break
feed_data(chunk)

elif part.name == 'imagedata':
Store this body part in a file.
filename = os.path.join(UPLOAD_PATH, part.secure_filename)
with open(filename, 'wb') as dest:

part.stream.pipe(dest)
else:

Do something else
form_data[part.name] = part.text

form = await req.get_media()
async for part in form:

if part.content_type == 'application/json':
Body part is a JSON document, do something useful with it
resp.media = await part.get_media()

elif part.name == 'datafile':
Do something with the uploaded data (file)
async for chunk in part.stream:

await feed_data(chunk)
elif part.name == 'imagedata':

Store this body part in a file.
filename = os.path.join(UPLOAD_PATH, part.secure_filename)
async with aiofiles.open(filename, 'wb') as dest:

await part.stream.pipe(dest)
else:

Do something else
form_data[part.name] = await part.text

Note: Rather than being read in and buffered all at once, the request stream is only consumed on-demand, while
iterating over the body parts in the form.

For each part, you can choose whether to read the whole part into memory, write it out to a file, or upload it to the
cloud. Falcon offers straightforward support for all of these scenarios.

5.4. Framework Reference 229

Falcon Documentation, Release 3.0.1

Body Part Type

class falcon.media.multipart.BodyPart(stream, headers, parse_options)
Represents a body part in a multipart form.

Note: BodyPart is meant to be instantiated directly only by the MultipartForm parser.

content_type
Value of the Content-Type header, or the multipart form default text/plain if the header is missing.

Type str

data
Property that acts as a convenience alias for get_data().

WSGI

ASGI

Equivalent to: content = part.get_data()
content = part.data

The await keyword must still be added when referencing the property:

Equivalent to: content = await part.get_data()
content = await part.data

Type bytes

name
The name parameter of the Content-Disposition header. The value of the “name” parameter is the original
field name from the submitted HTML form.

Note: According to RFC 7578, section 4.2, each part MUST include a Content-Disposition header field
of type “form-data”, where the name parameter is mandatory.

However, Falcon will not raise any error if this parameter is missing; the property value will be None in
that case.

Type str

filename
File name if the body part is an attached file, and None otherwise.

Type str

secure_filename
The sanitized version of filename using only the most common ASCII characters for maximum portability
and safety wrt using this name as a filename on a regular file system.

If filename is empty or unset when referencing this property, an instance of MultipartParseError
will be raised.

See also: secure_filename()

Type str

230 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://tools.ietf.org/html/rfc7578#section-4.2
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

stream
File-like input object for reading the body part of the multipart form request, if any. This object pro-
vides direct access to the server’s data stream and is non-seekable. The stream is automatically delimited
according to the multipart stream boundary.

With the exception of being buffered to keep track of the boundary, the wrapped body part stream in-
terface and behavior mimic Request.bounded_stream (WSGI) and Request.stream (ASGI),
respectively:

WSGI

ASGI

Reading the whole part content:

data = part.stream.read()

This is also safe:

doc = yaml.safe_load(part.stream)

Similarly to BoundedStream, the most efficient way to read the body part content is asynchronous
iteration over part data chunks:

async for data_chunk in part.stream:
pass

media
Property that acts as a convenience alias for get_media().

WSGI

ASGI

Equivalent to: deserialized_media = part.get_media()
deserialized_media = req.media

The await keyword must still be added when referencing the property:

Equivalent to: deserialized_media = await part.get_media()
deserialized_media = await part.media

Type object

text
Property that acts as a convenience alias for get_text().

WSGI

ASGI

Equivalent to: decoded_text = part.get_text()
decoded_text = part.text

The await keyword must still be added when referencing the property:

Equivalent to: decoded_text = await part.get_text()
decoded_text = await part.text

5.4. Framework Reference 231

https://docs.python.org/3/library/functions.html#object

Falcon Documentation, Release 3.0.1

Type str

get_data()
Return the body part content bytes.

The maximum number of bytes that may be read is configurable via MultipartParseOptions, and
a MultipartParseError is raised if the body part is larger that this size.

The size limit guards against reading unexpectedly large amount of data into memory by referencing data
and text properties that build upon this method. For large bodies, such as attached files, use the input
stream directly.

Note: Calling this method the first time will consume the part’s input stream. The result is cached for
subsequent access, and follow-up calls will just retrieve the cached content.

Returns The body part content.

Return type bytes

get_media()
Return a deserialized form of the multipart body part.

When called, this method will attempt to deserialize the body part stream using the Content-Type header
as well as the media-type handlers configured via MultipartParseOptions.

WSGI

ASGI

The result will be cached and returned in subsequent calls:

deserialized_media = part.get_media()

The result will be cached and returned in subsequent calls:

deserialized_media = await part.get_media()

Returns The deserialized media representation.

Return type object

get_text()
Return the body part content decoded as a text string.

Text is decoded from the part content (as returned by get_data()) using the charset specified in the
Content-Type header, or, if omitted, the default charset. The charset must be supported by Python’s
bytes.decode() function. The list of standard encodings (charsets) supported by the Python 3 stan-
dard library can be found here.

If decoding fails due to invalid data bytes (for the specified encoding), or the specified encoding itself is
unsupported, a MultipartParseError will be raised when referencing this property.

Note: As this method builds upon get_data(), it will consume the part’s input stream in the same
way.

232 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/codecs.html#standard-encodings

Falcon Documentation, Release 3.0.1

Returns The part decoded as a text string provided the part is encoded as text/plain, None
otherwise.

Return type str

Parsing Options

class falcon.media.multipart.MultipartParseOptions
Defines a set of configurable multipart form parser options.

default_charset
The default character encoding for text fields (default: utf-8).

Type str

max_body_part_count
The maximum number of body parts in the form (default: 64). If the form contains more parts than this
number, an instance of MultipartParseError will be raised. If this option is set to 0, no limit will
be imposed by the parser.

Type int

max_body_part_buffer_size
The maximum number of bytes to buffer and return when the BodyPart.get_data()method is called
(default: 1 MiB). If the body part size exceeds this value, an instance of MultipartParseError will
be raised.

Type int

max_body_part_headers_size
The maximum size (in bytes) of the body part headers structure (default: 8192). If the body part headers
size exceeds this value, an instance of MultipartParseError will be raised.

Type int

media_handlers
A dict-like object for configuring the media-types to handle. By default, handlers are provided for the
application/json and application/x-www-form-urlencoded media types.

Type Handlers

Parsing Errors

class falcon.media.multipart.MultipartParseError(description=None, **kwargs)
Represents a multipart form parsing error.

This error may refer to a malformed or truncated form, usage of deprecated or unsupported features, or form
parameters exceeding limits configured in MultipartParseOptions.

MultipartParseError instances raised in this module always include a short human-readable description
of the error.

The cause of this exception, if any, is stored in the __cause__ attribute using the “raise . . . from” form when
raising.

Parameters source_error (Exception) – The source exception that was the cause of this
one.

5.4. Framework Reference 233

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception

Falcon Documentation, Release 3.0.1

5.4.9 Redirection

Falcon defines a set of exceptions that can be raised within a middleware method, hook, or responder in order to trigger
a 3xx (Redirection) response to the client. Raising one of these classes short-circuits request processing in a manner
similar to raising an instance or subclass of HTTPError.

exception falcon.HTTPMovedPermanently(location, headers=None)
301 Moved Permanently.

The 301 (Moved Permanently) status code indicates that the target resource has been assigned a new permanent
URI.

Note: For historical reasons, a user agent MAY change the request method from POST to GET for the subse-
quent request. If this behavior is undesired, the 308 (Permanent Redirect) status code can be used instead.

(See also: RFC 7231, Section 6.4.2)

Parameters location (str) – URI to provide as the Location header in the response.

exception falcon.HTTPFound(location, headers=None)
302 Found.

The 302 (Found) status code indicates that the target resource resides temporarily under a different URI. Since
the redirection might be altered on occasion, the client ought to continue to use the effective request URI for
future requests.

Note: For historical reasons, a user agent MAY change the request method from POST to GET for the subse-
quent request. If this behavior is undesired, the 307 (Temporary Redirect) status code can be used instead.

(See also: RFC 7231, Section 6.4.3)

Parameters location (str) – URI to provide as the Location header in the response.

exception falcon.HTTPSeeOther(location, headers=None)
303 See Other.

The 303 (See Other) status code indicates that the server is redirecting the user agent to a different resource, as
indicated by a URI in the Location header field, which is intended to provide an indirect response to the original
request.

A 303 response to a GET request indicates that the origin server does not have a representation of the target
resource that can be transferred over HTTP. However, the Location header in the response may be dereferenced
to obtain a representation for an alternative resource. The recipient may find this alternative useful, even though
it does not represent the original target resource.

Note: The new URI in the Location header field is not considered equivalent to the effective request URI.

(See also: RFC 7231, Section 6.4.4)

Parameters location (str) – URI to provide as the Location header in the response.

exception falcon.HTTPTemporaryRedirect(location, headers=None)
307 Temporary Redirect.

The 307 (Temporary Redirect) status code indicates that the target resource resides temporarily under a different
URI and the user agent MUST NOT change the request method if it performs an automatic redirection to that

234 Chapter 5. Documentation

https://tools.ietf.org/html/rfc7231#section-6.4.2
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc7231#section-6.4.3
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc7231#section-6.4.4
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

URI. Since the redirection can change over time, the client ought to continue using the original effective request
URI for future requests.

Note: This status code is similar to 302 (Found), except that it does not allow changing the request method
from POST to GET.

(See also: RFC 7231, Section 6.4.7)

Parameters location (str) – URI to provide as the Location header in the response.

exception falcon.HTTPPermanentRedirect(location, headers=None)
308 Permanent Redirect.

The 308 (Permanent Redirect) status code indicates that the target resource has been assigned a new permanent
URI.

Note: This status code is similar to 301 (Moved Permanently), except that it does not allow changing the
request method from POST to GET.

(See also: RFC 7238, Section 3)

Parameters location (str) – URI to provide as the Location header in the response.

5.4.10 Middleware

• Short-Circuiting

• Exception Handling

Middleware components provide a way to execute logic before the framework routes each request, after each request
is routed but before the target responder is called, or just before the response is returned for each request.

Note: Unlike hooks, middleware methods apply globally to the entire App.

Components are registered with the middleware kwarg when instantiating Falcon’s App class. A middleware compo-
nent is simply a class that implements one or more of the event handler methods defined below.

WSGI

ASGI

Falcon’s middleware interface is defined as follows:

class ExampleComponent:
def process_request(self, req, resp):

"""Process the request before routing it.

Note:
Because Falcon routes each request based on req.path, a
request can be effectively re-routed by setting that
attribute to a new value from within process_request().

(continues on next page)

5.4. Framework Reference 235

https://tools.ietf.org/html/rfc7231#section-6.4.7
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc7238#section-3
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

(continued from previous page)

Args:
req: Request object that will eventually be

routed to an on_* responder method.
resp: Response object that will be routed to

the on_* responder.
"""

def process_resource(self, req, resp, resource, params):
"""Process the request after routing.

Note:
This method is only called when the request matches
a route to a resource.

Args:
req: Request object that will be passed to the

routed responder.
resp: Response object that will be passed to the

responder.
resource: Resource object to which the request was

routed.
params: A dict-like object representing any additional

params derived from the route's URI template fields,
that will be passed to the resource's responder
method as keyword arguments.

"""

def process_response(self, req, resp, resource, req_succeeded):
"""Post-processing of the response (after routing).

Args:
req: Request object.
resp: Response object.
resource: Resource object to which the request was

routed. May be None if no route was found
for the request.

req_succeeded: True if no exceptions were raised while
the framework processed and routed the request;
otherwise False.

"""

The ASGI middleware interface is similar to WSGI, but also supports the standard ASGI lifespan events. However,
because lifespan events are an optional part of the ASGI specification, they may or may not fire depending on your
ASGI server.

class ExampleComponent:
async def process_startup(self, scope, event):

"""Process the ASGI lifespan startup event.

Invoked when the server is ready to start up and
receive connections, but before it has started to
do so.

To halt startup processing and signal to the server that it
should terminate, simply raise an exception and the
framework will convert it to a "lifespan.startup.failed"

(continues on next page)

236 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

(continued from previous page)

event for the server.

Args:
scope (dict): The ASGI scope dictionary for the

lifespan protocol. The lifespan scope exists
for the duration of the event loop.

event (dict): The ASGI event dictionary for the
startup event.

"""

async def process_shutdown(self, scope, event):
"""Process the ASGI lifespan shutdown event.

Invoked when the server has stopped accepting
connections and closed all active connections.

To halt shutdown processing and signal to the server
that it should immediately terminate, simply raise an
exception and the framework will convert it to a
"lifespan.shutdown.failed" event for the server.

Args:
scope (dict): The ASGI scope dictionary for the

lifespan protocol. The lifespan scope exists
for the duration of the event loop.

event (dict): The ASGI event dictionary for the
shutdown event.

"""

async def process_request(self, req, resp):
"""Process the request before routing it.

Note:
Because Falcon routes each request based on req.path, a
request can be effectively re-routed by setting that
attribute to a new value from within process_request().

Args:
req: Request object that will eventually be

routed to an on_* responder method.
resp: Response object that will be routed to

the on_* responder.
"""

async def process_resource(self, req, resp, resource, params):
"""Process the request after routing.

Note:
This method is only called when the request matches
a route to a resource.

Args:
req: Request object that will be passed to the

routed responder.
resp: Response object that will be passed to the

responder.
resource: Resource object to which the request was

(continues on next page)

5.4. Framework Reference 237

Falcon Documentation, Release 3.0.1

(continued from previous page)

routed.
params: A dict-like object representing any additional

params derived from the route's URI template fields,
that will be passed to the resource's responder
method as keyword arguments.

"""

async def process_response(self, req, resp, resource, req_succeeded):
"""Post-processing of the response (after routing).

Args:
req: Request object.
resp: Response object.
resource: Resource object to which the request was

routed. May be None if no route was found
for the request.

req_succeeded: True if no exceptions were raised while
the framework processed and routed the request;
otherwise False.

"""

async def process_request_ws(self, req, ws):
"""Process a WebSocket handshake request before routing it.

Note:
Because Falcon routes each request based on req.path, a
request can be effectively re-routed by setting that
attribute to a new value from within process_request().

Args:
req: Request object that will eventually be

passed into an on_websocket() responder method.
ws: The WebSocket object that will be passed into

on_websocket() after routing.
"""

async def process_resource_ws(self, req, ws, resource, params):
"""Process a WebSocket handshake request after routing.

Note:
This method is only called when the request matches
a route to a resource.

Args:
req: Request object that will be passed to the

routed responder.
ws: WebSocket object that will be passed to the

routed responder.
resource: Resource object to which the request was

routed.
params: A dict-like object representing any additional

params derived from the route's URI template fields,
that will be passed to the resource's responder
method as keyword arguments.

"""

It is also possible to implement a middleware component that is compatible with both ASGI and WSGI apps. This is

238 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

done by applying an *_async postfix to distinguish the two different versions of each middleware method, as in the
following example:

class ExampleComponent:
def process_request(self, req, resp):

"""Process WSGI request using synchronous logic.

Note that req and resp are instances of falcon.Request and
falcon.Response, respectively.
"""

async def process_request_async(self, req, resp):
"""Process ASGI request using asynchronous logic.

Note that req and resp are instances of falcon.asgi.Request and
falcon.asgi.Response, respectively.
"""

Tip: Because process_request executes before routing has occurred, if a component modifies req.path in its
process_request method, the framework will use the modified value to route the request.

For example:

Route requests based on the host header.
req.path = '/' + req.host + req.path

Tip: The process_resource method is only called when the request matches a route to a resource. To take action when
a route is not found, a sink may be used instead.

Tip: In order to pass data from a middleware function to a resource function use the req.context and resp.
context objects. These context objects are intended to hold request and response data specific to your app as it
passes through the framework.

Each component’s process_request, process_resource, and process_response methods are executed hierarchically, as a
stack, following the ordering of the list passed via the middleware kwarg of falcon.App or falcon.asgi.App.
For example, if a list of middleware objects are passed as [mob1, mob2, mob3], the order of execution is as
follows:

mob1.process_request
mob2.process_request

mob3.process_request
mob1.process_resource

mob2.process_resource
mob3.process_resource

<route to resource responder method>
mob3.process_response

mob2.process_response
mob1.process_response

Note that each component need not implement all process_* methods; in the case that one of the three methods is
missing, it is treated as a noop in the stack. For example, if mob2 did not implement process_request and mob3 did
not implement process_response, the execution order would look like this:

5.4. Framework Reference 239

Falcon Documentation, Release 3.0.1

mob1.process_request
_

mob3.process_request
mob1.process_resource

mob2.process_resource
mob3.process_resource

<route to responder method>
_

mob2.process_response
mob1.process_response

Short-Circuiting

A process_request or process_resource middleware method may short-circuit further request processing by setting
falcon.Response.complete to True, e.g.:

resp.complete = True

After the method returns, setting this flag will cause the framework to skip any remaining process_request and pro-
cess_resource methods, as well as the responder method that the request would have been routed to. However, any
process_response middleware methods will still be called.

In a similar manner, setting falcon.Response.complete to True from within a process_resource method will
short-circuit further request processing at that point.

In the example below, you can see how request processing will be short-circuited once falcon.Response.
complete has been set to True, i.e., the framework will prevent mob3.process_request, all process_resource
methods, as well as the routed responder method from processing the request. However, all process_response methods
will still be called:

mob1.process_request
mob2.process_request # resp.complete = True

<skip mob3.process_request>
<skip mob1/mob2/mob3.process_resource>
<skip route to resource responder method>
mob3.process_response

mob2.process_response
mob1.process_response

This feature affords use cases in which the response may be pre-constructed, such as in the case of caching.

Exception Handling

If one of the process_request middleware methods raises an exception, it will be processed according to the exception
type. If the type matches a registered error handler, that handler will be invoked and then the framework will begin
to unwind the stack, skipping any lower layers. The error handler may itself raise an instance of HTTPError or
HTTPStatus, in which case the framework will use the latter exception to update the resp object.

Note: By default, the framework installs two handlers, one for HTTPError and one for HTTPStatus. These can
be overridden via add_error_handler().

Regardless, the framework will continue unwinding the middleware stack. For example, if mob2.process_request were
to raise an error, the framework would execute the stack as follows:

240 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

mob1.process_request
mob2.process_request

<skip mob1/mob2 process_resource>
<skip mob3.process_request>
<skip mob3.process_resource>
<skip route to resource responder method>
mob3.process_response

mob2.process_response
mob1.process_response

As illustrated above, by default, all process_response methods will be executed, even when a process_request, pro-
cess_resource, or on_* resource responder raises an error. This behavior is controlled by the App class’s indepen-
dent_middleware keyword argument.

Finally, if one of the process_response methods raises an error, or the routed on_* responder method itself raises an
error, the exception will be handled in a similar manner as above. Then, the framework will execute any remaining
middleware on the stack.

5.4.11 CORS

Cross Origin Resource Sharing (CORS) is an additional security check performed by modern browsers to prevent
unauthorized requests between different domains.

When implementing a web API, it is common to have to also implement a CORS policy. Therefore, Falcon provides
an easy way to enable a simple CORS policy via a flag passed to falcon.App or falcon.asgi.App.

By default, Falcon’s built-in CORS support is disabled, so that any cross-origin requests will be blocked by the
browser. Passing cors_enable=True will cause the framework to include the necessary response headers to
allow access from any origin to any route in the app. Individual responders may override this behavior by setting the
Access-Control-Allow-Origin header explicitly.

Whether or not you implement a CORS policy, we recommend also putting a robust AuthN/Z layer in place to authorize
individual clients, as needed, to protect sensitive resources.

Directly passing the falcon.CORSMiddleware middleware to the application allows customization of the CORS
policy applied. The middleware allows customizing the allowed origins, if credentials should be allowed and if addi-
tional headers can be exposed.

Usage

WSGI

ASGI

import falcon

Enable a simple CORS policy for all responses
app = falcon.App(cors_enable=True)

Enable CORS policy for example.com and allows credentials
app = falcon.App(middleware=falcon.CORSMiddleware(

allow_origins='example.com', allow_credentials='*'))

import falcon.asgi

Enable a simple CORS policy for all responses
(continues on next page)

5.4. Framework Reference 241

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Falcon Documentation, Release 3.0.1

(continued from previous page)

app = falcon.asgi.App(cors_enable=True)

Enable CORS policy for example.com and allows credentials
app = falcon.asgi.App(middleware=falcon.CORSMiddleware(

allow_origins='example.com', allow_credentials='*'))

CORSMiddleware

class falcon.CORSMiddleware(allow_origins: Union[str, Iterable[str]] = '*', expose_headers: Op-
tional[Union[str, Iterable[str]]] = None, allow_credentials: Op-
tional[Union[str, Iterable[str]]] = None)

CORS Middleware.

This middleware provides a simple out-of-the box CORS policy, including handling of preflighted requests from
the browser.

See also:

• https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

• https://www.w3.org/TR/cors/#resource-processing-model

Keyword Arguments

• allow_origins (Union[str, Iterable[str]]) – List of origins to allow (case
sensitive). The string '*' acts as a wildcard, matching every origin. (default '*').

• expose_headers (Optional[Union[str, Iterable[str]]]) – List of
additional response headers to expose via the Access-Control-Expose-Headers
header. These headers are in addition to the CORS-safelisted ones: Cache-Control,
Content-Language, Content-Length, Content-Type, Expires,
Last-Modified, Pragma. (default None).

See also: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/
Access-Control-Expose-Headers

• allow_credentials (Optional[Union[str, Iterable[str]]])
– List of origins (case sensitive) for which to allow credentials via the
Access-Control-Allow-Credentials header. The string '*' acts as a
wildcard, matching every allowed origin, while None disallows all origins. This parameter
takes effect only if the origin is allowed by the allow_origins argument. (Default
None).

5.4.12 Hooks

• Before Hooks

• After Hooks

Falcon supports before and after hooks. You install a hook simply by applying one of the decorators below, either to
an individual responder or to an entire resource.

For example, consider this hook that validates a POST request for an image resource:

242 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://www.w3.org/TR/cors/#resource-processing-model
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Expose-Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Expose-Headers
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

def validate_image_type(req, resp, resource, params):
if req.content_type not in ALLOWED_IMAGE_TYPES:

msg = 'Image type not allowed. Must be PNG, JPEG, or GIF'
raise falcon.HTTPBadRequest(title='Bad request', description=msg)

You would attach this hook to an on_post responder like so:

@falcon.before(validate_image_type)
def on_post(self, req, resp):

pass

Or, suppose you had a hook that you would like to apply to all responders for a given resource. In that case, you would
simply decorate the resource class:

@falcon.before(extract_project_id)
class Message:

def on_post(self, req, resp, project_id):
pass

def on_get(self, req, resp, project_id):
pass

Note: When decorating an entire resource class, all method names that resemble responders, including suffixed (see
also add_route()) ones, are decorated. If, for instance, a method is called on_get_items, but it is not meant for
handling GET requests under a route with the suffix items, the easiest workaround for preventing the hook function
from being applied to the method is renaming it not to clash with the responder pattern.

Note also that you can pass additional arguments to your hook function as needed:

def validate_image_type(req, resp, resource, params, allowed_types):
if req.content_type not in allowed_types:

msg = 'Image type not allowed.'
raise falcon.HTTPBadRequest(title='Bad request', description=msg)

@falcon.before(validate_image_type, ['image/png'])
def on_post(self, req, resp):

pass

Falcon supports using any callable as a hook. This allows for using a class instead of a function:

class Authorize:
def __init__(self, roles):

self._roles = roles

def __call__(self, req, resp, resource, params):
pass

@falcon.before(Authorize(['admin']))
def on_post(self, req, resp):

pass

Falcon middleware components can also be used to insert logic before and after requests. However, unlike hooks,
middleware components are triggered globally for all requests.

Tip: In order to pass data from a hook function to a resource function use the req.context and resp.context

5.4. Framework Reference 243

Falcon Documentation, Release 3.0.1

objects. These context objects are intended to hold request and response data specific to your app as it passes through
the framework.

Before Hooks

falcon.before(action, *args, is_async=False, **kwargs)
Execute the given action function before the responder.

The params argument that is passed to the hook contains only the fields from the URI template path; it does not
include query string values.

Hooks may inject extra params as needed. For example:

def do_something(req, resp, resource, params):
try:

params['id'] = int(params['id'])
except ValueError:

raise falcon.HTTPBadRequest(title='Invalid ID',
description='ID was not valid.')

params['answer'] = 42

Parameters

• action (callable) – A function of the form func(req, resp, resource,
params), where resource is a reference to the resource class instance associated with the
request and params is a dict of URI template field names, if any, that will be passed into the
resource responder as kwargs.

• *args – Any additional arguments will be passed to action in the order given, immediately
following the req, resp, resource, and params arguments.

Keyword Arguments

• is_async (bool) – Set to True for ASGI apps to provide a hint that the decorated
responder is a coroutine function (i.e., that it is defined with async def) or that it returns
an awaitable coroutine object.

Normally, when the function source is declared using async def, the resulting function
object is flagged to indicate it returns a coroutine when invoked, and this can be automat-
ically detected. However, it is possible to use a regular function to return an awaitable
coroutine object, in which case a hint is required to let the framework know what to expect.
Also, a hint is always required when using a cythonized coroutine function, since Cython
does not flag them in a way that can be detected in advance, even when the function is
declared using async def.

• **kwargs – Any additional keyword arguments will be passed through to action.

244 Chapter 5. Documentation

https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

After Hooks

falcon.after(action, *args, is_async=False, **kwargs)
Execute the given action function after the responder.

Parameters

• action (callable) – A function of the form func(req, resp, resource),
where resource is a reference to the resource class instance associated with the request

• *args – Any additional arguments will be passed to action in the order given, immediately
following the req, resp, resource, and params arguments.

Keyword Arguments

• is_async (bool) – Set to True for ASGI apps to provide a hint that the decorated
responder is a coroutine function (i.e., that it is defined with async def) or that it returns
an awaitable coroutine object.

Normally, when the function source is declared using async def, the resulting function
object is flagged to indicate it returns a coroutine when invoked, and this can be automat-
ically detected. However, it is possible to use a regular function to return an awaitable
coroutine object, in which case a hint is required to let the framework know what to expect.
Also, a hint is always required when using a cythonized coroutine function, since Cython
does not flag them in a way that can be detected in advance, even when the function is
declared using async def.

• **kwargs – Any additional keyword arguments will be passed through to action.

5.4.13 Routing

• Default Behavior

• Field Converters

• Built-in Converters

• Custom Converters

• Custom Routers

• Suffixed Responders

• Default Router

• Routing Utilities

• Custom HTTP Methods

Falcon uses resource-based routing to encourage a RESTful architectural style. Each resource is represented by a class
that is responsible for handling all of the HTTP methods that the resource supports.

For each HTTP method supported by the resource, the class implements a corresponding Python method with a
name that starts with on_ and ends in the lowercased HTTP method name (e.g., on_get(), on_patch(),
on_delete(), etc.)

Note: Resources in Falcon are represented by a single class instance that is created at application startup when the
routes are configured. This minimizes routing overhead and simplifies the implementation of resource classes. In the

5.4. Framework Reference 245

https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

case of WSGI apps, this also means that resource classes must be implemented in a thread-safe manner (see also: Is
Falcon thread-safe?).

Falcon routes incoming requests (including WebSocket handshakes) to resources based on a set of URI templates. If
the path requested by the client matches the template for a given route, the request is then passed on to the associated
resource for processing.

Here’s a quick example to show how all the pieces fit together:

WSGI

ASGI

import json

import falcon

class ImagesResource:

def on_get(self, req, resp):
doc = {

'images': [
{

'href': '/images/1eaf6ef1-7f2d-4ecc-a8d5-6e8adba7cc0e.png'
}

]
}

Create a JSON representation of the resource; this could
also be done automatically by assigning to resp.media
resp.text = json.dumps(doc, ensure_ascii=False)

The following line can be omitted because 200 is the default
status returned by the framework, but it is included here to
illustrate how this may be overridden as needed.
resp.status = falcon.HTTP_200

app = falcon.App()

images = ImagesResource()
app.add_route('/images', images)

import json

import falcon
import falcon.asgi

class ImagesResource:

async def on_get(self, req, resp):
doc = {

'images': [
{

'href': '/images/1eaf6ef1-7f2d-4ecc-a8d5-6e8adba7cc0e.png'
}

(continues on next page)

246 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

(continued from previous page)

]
}

Create a JSON representation of the resource; this could
also be done automatically by assigning to resp.media
resp.text = json.dumps(doc, ensure_ascii=False)

The following line can be omitted because 200 is the default
status returned by the framework, but it is included here to
illustrate how this may be overridden as needed.
resp.status = falcon.HTTP_200

app = falcon.asgi.App()

images = ImagesResource()
app.add_route('/images', images)

If no route matches the request, control then passes to a default responder that simply raises an instance of
HTTPRouteNotFound. By default, this error will be rendered as a 404 response for a regular HTTP request,
and a 403 response with a 3404 close code for a WebSocket handshake. This behavior can be modified by adding a
custom error handler (see also this FAQ topic).

On the other hand, if a route is matched but the resource does not implement a responder for the requested HTTP
method, the framework invokes a default responder that raises an instance of HTTPMethodNotAllowed. This
class will be rendered by default as a 405 response for a regular HTTP request, and a 403 response with a 3405 close
code for a WebSocket handshake.

Falcon also provides a default responder for OPTIONS requests that takes into account which methods are imple-
mented for the target resource.

Default Behavior

Falcon’s default routing engine is based on a decision tree that is first compiled into Python code, and then evalu-
ated by the runtime. By default, the decision tree is compiled only when the router handles the first request. See
CompiledRouter for more details.

The falcon.App.add_route() and falcon.asgi.App.add_route() methods are used to associate a
URI template with a resource. Falcon then maps incoming requests to resources based on these templates.

Falcon’s default router uses Python classes to represent resources. In practice, these classes act as controllers in your
application. They convert an incoming request into one or more internal actions, and then compose a response back to
the client based on the results of those actions. (See also: Tutorial: Creating Resources)

request →
Resource Orchestrate the requested action
Controller Compose the result

response ←

Each resource class defines various “responder” methods, one for each HTTP method the resource allows. Responder
names start with on_ and are named according to which HTTP method they handle, as in on_get(), on_post(),
on_put(), etc.

Note: If your resource does not support a particular HTTP method, simply omit the corresponding responder and Fal-

5.4. Framework Reference 247

Falcon Documentation, Release 3.0.1

con will use a default responder that raises an instance of HTTPMethodNotAllowed when that method is requested.
Normally this results in sending a 405 response back to the client.

Responders must always define at least two arguments to receive Request and Response objects, respectively:

def on_post(self, req, resp):
pass

For ASGI apps, the responder must be a coroutine function:

async def on_post(self, req, resp):
pass

The Request object represents the incoming HTTP request. It exposes properties and methods for examining head-
ers, query string parameters, and other metadata associated with the request. A file-like stream object is also provided
for reading any data that was included in the body of the request.

The Response object represents the application’s HTTP response to the above request. It provides properties and
methods for setting status, header and body data. The Response object also exposes a dict-like context property
for passing arbitrary data to hooks and middleware methods.

Note: Rather than directly manipulate the Response object, a responder may raise an instance of either
HTTPError or HTTPStatus. Falcon will convert these exceptions to appropriate HTTP responses. Alternatively,
you can handle them yourself via add_error_handler().

In addition to the standard req and resp parameters, if the route’s template contains field expressions, any responder
that desires to receive requests for that route must accept arguments named after the respective field names defined in
the template.

A field expression consists of a bracketed field name. For example, given the following template:

/user/{name}

A PUT request to '/user/kgriffs' would cause the framework to invoke the on_put() responder method on
the route’s resource class, passing 'kgriffs' via an additional name argument defined by the responder:

WSGI

ASGI

Template fields correspond to named arguments or keyword
arguments, following the usual req and resp args.
def on_put(self, req, resp, name):

pass

Template fields correspond to named arguments or keyword
arguments, following the usual req and resp args.
async def on_put(self, req, resp, name):

pass

Because field names correspond to argument names in responder methods, they must be valid Python identifiers.

Individual path segments may contain one or more field expressions, and fields need not span the entire path segment.
For example:

/repos/{org}/{repo}/compare/{usr0}:{branch0}...{usr1}:{branch1}
/serviceRoot/People('{name}')

248 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

(See also the Falcon tutorial for additional examples and a walkthrough of setting up routes within the context of a
sample application.)

Field Converters

Falcon’s default router supports the use of field converters to transform a URI template field value. Field converters
may also perform simple input validation. For example, the following URI template uses the int converter to convert
the value of tid to a Python int, but only if it has exactly eight digits:

/teams/{tid:int(8)}

If the value is malformed and can not be converted, Falcon will reject the request with a 404 response to the client.

Converters are instantiated with the argument specification given in the field expression. These specifications follow
the standard Python syntax for passing arguments. For example, the comments in the following code show how a
converter would be instantiated given different argument specifications in the URI template:

IntConverter()
app.add_route(

'/a/{some_field:int}',
some_resource

)

IntConverter(8)
app.add_route(

'/b/{some_field:int(8)}',
some_resource

)

IntConverter(8, min=10000000)
app.add_route(

'/c/{some_field:int(8, min=10000000)}',
some_resource

)

Built-in Converters

Identifier Class Example
int IntConverter /teams/{tid:int(8)}
uuid UUIDConverter /diff/{left:uuid}...{right:uuid}
dt DateTimeConverter /logs/{day:dt("%Y-%m-%d")}

class falcon.routing.IntConverter(num_digits=None, min=None, max=None)
Converts a field value to an int.

Identifier: int

Keyword Arguments

• num_digits (int) – Require the value to have the given number of digits.

5.4. Framework Reference 249

https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

• min (int) – Reject the value if it is less than this number.

• max (int) – Reject the value if it is greater than this number.

convert(value)
Convert a URI template field value to another format or type.

Parameters value (str) – Original string to convert.

Returns

Converted field value, or None if the field can not be converted.

Return type object

class falcon.routing.UUIDConverter
Converts a field value to a uuid.UUID.

Identifier: uuid

In order to be converted, the field value must consist of a string of 32 hexadecimal digits, as defined in RFC
4122, Section 3. Note, however, that hyphens and the URN prefix are optional.

convert(value)
Convert a URI template field value to another format or type.

Parameters value (str) – Original string to convert.

Returns

Converted field value, or None if the field can not be converted.

Return type object

class falcon.routing.DateTimeConverter(format_string='%Y-%m-%dT%H:%M:%SZ')
Converts a field value to a datetime.

Identifier: dt

Keyword Arguments format_string (str) – String used to parse the field value into a date-
time. Any format recognized by strptime() is supported (default '%Y-%m-%dT%H:%M:%SZ').

convert(value)
Convert a URI template field value to another format or type.

Parameters value (str) – Original string to convert.

Returns

Converted field value, or None if the field can not be converted.

Return type object

Custom Converters

Custom converters can be registered via the converters router option. A converter is simply a class that implements
the BaseConverter interface:

class falcon.routing.BaseConverter
Abstract base class for URI template field converters.

abstract convert(value)
Convert a URI template field value to another format or type.

Parameters value (str) – Original string to convert.

250 Chapter 5. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://tools.ietf.org/html/rfc4122#section-3.
https://tools.ietf.org/html/rfc4122#section-3.
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Returns

Converted field value, or None if the field can not be converted.

Return type object

Custom Routers

A custom routing engine may be specified when instantiating falcon.App() or falcon.asgi.App(). For
example:

router = MyRouter()
app = App(router=router)

Custom routers may derive from the default CompiledRouter engine, or implement a completely different routing
strategy (such as object-based routing).

A custom router is any class that implements the following interface:

class MyRouter:
def add_route(self, uri_template, resource, **kwargs):

"""Adds a route between URI path template and resource.

Args:
uri_template (str): A URI template to use for the route
resource (object): The resource instance to associate with

the URI template.

Keyword Args:
suffix (str): Optional responder name suffix for this

route. If a suffix is provided, Falcon will map GET
requests to ``on_get_{suffix}()``, POST requests to
``on_post_{suffix}()``, etc. In this way, multiple
closely-related routes can be mapped to the same
resource. For example, a single resource class can
use suffixed responders to distinguish requests for
a single item vs. a collection of those same items.
Another class might use a suffixed responder to handle
a shortlink route in addition to the regular route for
the resource.

**kwargs (dict): Accepts any additional keyword arguments
that were originally passed to the falcon.App.add_route()
method. These arguments MUST be accepted via the
double-star variadic pattern (**kwargs), and ignore any
unrecognized or unsupported arguments.

"""

def find(self, uri, req=None):
"""Search for a route that matches the given partial URI.

Args:
uri(str): The requested path to route.

Keyword Args:
req(Request): The Request object that will be passed to

the routed responder. The router may use `req` to
further differentiate the requested route. For

(continues on next page)

5.4. Framework Reference 251

https://docs.python.org/3/library/functions.html#object

Falcon Documentation, Release 3.0.1

(continued from previous page)

example, a header may be used to determine the
desired API version and route the request
accordingly.

Note:
The `req` keyword argument was added in version
1.2. To ensure backwards-compatibility, routers
that do not implement this argument are still
supported.

Returns:
tuple: A 4-member tuple composed of (resource, method_map,

params, uri_template), or ``None`` if no route matches
the requested path.

"""

Suffixed Responders

While Falcon encourages the REST architectural style, it is flexible enough to accomodate other paradigms. Consider
the task of building an API for a calculator which can both add and subtract two numbers. You could implement the
following:

class Add():
def on_get(self, req, resp):

resp.text = str(req.get_param_as_int('x') + req.get_param_as_int('y'))
resp.status = falcon.HTTP_200

class Subtract():
def on_get(self, req, resp):

resp.text = str(req.get_param_as_int('x') - req.get_param_as_int('y'))
resp.status = falcon.HTTP_200

add = Add()
subtract = Subtract()
app = falcon.App()
app.add_route('/add', add)
app.add_route('/subtract', subtract)

However, this approach highlights a situation in which grouping by resource may not make sense for your domain. In
this context, adding and subtracting don’t seem to conceptually map to two separate resource collections. Instead of
separating them based on the idea of “getting” different resources from each, we might want to group them based on
the attributes of their function (i.e., take two numbers, do something to them, return the result).

With Suffixed Responders, we can do just that, rewriting the example above in a more procedural style:

class Calculator():
def on_get_add(self, req, resp):

resp.text = str(req.get_param_as_int('x') + req.get_param_as_int('y'))
resp.status = falcon.HTTP_200

def on_get_subtract(self, req, resp):
resp.text = str(req.get_param_as_int('x') - req.get_param_as_int('y'))
resp.status = falcon.HTTP_200

(continues on next page)

252 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

(continued from previous page)

calc = Calculator()
app = falcon.App()
app.add_route('/add', calc, suffix='add')
app.add_route('/subtract', calc, suffix='subtract')

In the second iteration, using Suffixed Responders, we’re able to group responders based on their actions rather than
the data they represent. This gives us added flexibility to accomodate situations in which a purely RESTful approach
simply doesn’t fit.

Default Router

class falcon.routing.CompiledRouter
Fast URI router which compiles its routing logic to Python code.

Generally you do not need to use this router class directly, as an instance is created by default when the fal-
con.App class is initialized.

The router treats URI paths as a tree of URI segments and searches by checking the URI one segment at a time.
Instead of interpreting the route tree for each look-up, it generates inlined, bespoke Python code to perform the
search, then compiles that code. This makes the route processing quite fast.

The compilation process is delayed until the first use of the router (on the first routed request) to reduce the
time it takes to start the application. This may noticeably delay the first response of the application when a large
number of routes have been added. When adding the last route to the application a compile flag may be provided
to force the router to compile immediately, thus avoiding any delay for the first response.

Note: When using a multi-threaded web server to host the application, it is possible that multiple requests may
be routed at the same time upon startup. Therefore, the framework employs a lock to ensure that only a single
compilation of the decision tree is performed.

See also CompiledRouter.add_route()

add_route(uri_template, resource, **kwargs)
Add a route between a URI path template and a resource.

This method may be overridden to customize how a route is added.

Parameters

• uri_template (str) – A URI template to use for the route

• resource (object) – The resource instance to associate with the URI template.

Keyword Arguments

• suffix (str) – Optional responder name suffix for this route. If a suffix is pro-
vided, Falcon will map GET requests to on_get_{suffix}(), POST requests to
on_post_{suffix}(), etc. In this way, multiple closely-related routes can be mapped
to the same resource. For example, a single resource class can use suffixed responders to
distinguish requests for a single item vs. a collection of those same items. Another class
might use a suffixed responder to handle a shortlink route in addition to the regular route
for the resource.

• compile (bool) – Optional flag that can be used to compile the routing logic on this call.
By default, CompiledRouter delays compilation until the first request is routed. This
may introduce a noticeable amount of latency when handling the first request, especially
when the application implements a large number of routes. Setting compile to True when

5.4. Framework Reference 253

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

the last route is added ensures that the first request will not be delayed in this case (defaults
to False).

Note: Always setting this flag to True may slow down the addition of new routes when
hundreds of them are added at once. It is advisable to only set this flag to True when
adding the final route.

find(uri, req=None)
Search for a route that matches the given partial URI.

Parameters uri (str) – The requested path to route.

Keyword Arguments req – The falcon.Request or falcon.asgi.Request object
that will be passed to the routed responder. Currently the value of this argument is ignored
by CompiledRouter. Routing is based solely on the path.

Returns A 4-member tuple composed of (resource, method_map, params, uri_template), or
None if no route matches the requested path.

Return type tuple

map_http_methods(resource, **kwargs)
Map HTTP methods (e.g., GET, POST) to methods of a resource object.

This method is called from add_route() and may be overridden to provide a custom mapping strategy.

Parameters resource (instance) – Object which represents a REST resource. The default
maps the HTTP method GET to on_get(), POST to on_post(), etc. If any HTTP
methods are not supported by your resource, simply don’t define the corresponding request
handlers, and Falcon will do the right thing.

Keyword Arguments suffix (str) – Optional responder name suffix for this route. If a suf-
fix is provided, Falcon will map GET requests to on_get_{suffix}(), POST requests to
on_post_{suffix}(), etc. In this way, multiple closely-related routes can be mapped
to the same resource. For example, a single resource class can use suffixed responders to
distinguish requests for a single item vs. a collection of those same items. Another class
might use a suffixed responder to handle a shortlink route in addition to the regular route for
the resource.

Routing Utilities

The falcon.routing module contains the following utilities that may be used by custom routing engines.

falcon.routing.map_http_methods(resource, suffix=None)
Map HTTP methods (e.g., GET, POST) to methods of a resource object.

Parameters resource – An object with responder methods, following the naming convention
on_*, that correspond to each method the resource supports. For example, if a resource supports
GET and POST, it should define on_get(self, req, resp) and on_post(self,
req, resp).

Keyword Arguments suffix (str) – Optional responder name suffix for this route. If a suf-
fix is provided, Falcon will map GET requests to on_get_{suffix}(), POST requests to
on_post_{suffix}(), etc.

Returns A mapping of HTTP methods to explicitly defined resource responders.

Return type dict

254 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

falcon.routing.set_default_responders(method_map, asgi=False)
Map HTTP methods not explicitly defined on a resource to default responders.

Parameters

• method_map – A dict with HTTP methods mapped to responders explicitly defined in a
resource.

• asgi (bool) – True if using an ASGI app, False otherwise (default False).

falcon.routing.compile_uri_template(template)
Compile the given URI template string into a pattern matcher.

This function can be used to construct custom routing engines that iterate through a list of possible routes,
attempting to match an incoming request against each route’s compiled regular expression.

Each field is converted to a named group, so that when a match is found, the fields can be easily extracted using
re.MatchObject.groupdict().

This function does not support the more flexible templating syntax used in the default router. Only simple paths
with bracketed field expressions are recognized. For example:

/
/books
/books/{isbn}
/books/{isbn}/characters
/books/{isbn}/characters/{name}

Also, note that if the template contains a trailing slash character, it will be stripped in order to normalize the
routing logic.

Parameters template (str) – The template to compile. Note that field names are restricted to
ASCII a-z, A-Z, and the underscore character.

Returns (template_field_names, template_regex)

Return type tuple

falcon.app_helpers.prepare_middleware(middleware, independent_middleware=False,
asgi=False)

Check middleware interfaces and prepare the methods for request handling.

Note: This method is only applicable to WSGI apps.

Parameters middleware (iterable) – An iterable of middleware objects.

Keyword Arguments

• independent_middleware (bool) – True if the request and response middleware
methods should be treated independently (default False)

• asgi (bool) – True if an ASGI app, False otherwise (default False)

Returns A tuple of prepared middleware method tuples

Return type tuple

falcon.app_helpers.prepare_middleware_ws(middleware)
Check middleware interfaces and prepare WebSocket methods for request handling.

5.4. Framework Reference 255

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

Falcon Documentation, Release 3.0.1

Note: This method is only applicable to ASGI apps.

Parameters middleware (iterable) – An iterable of middleware objects.

Returns A two-item (request_mw, resource_mw) tuple, where request_mw is an or-
dered list of process_request_ws() methods, and resource_mw is an ordered list of
process_resource_ws() methods.

Return type tuple

Custom HTTP Methods

While not normally advised, some applications may need to support non-standard HTTP methods, in addition to the
standard HTTP methods like GET and PUT. To support custom HTTP methods, use one of the following methods:

• Ideally, if you don’t use hooks in your application, you can easily add the custom methods in your application
setup by overriding the value of falcon.constants.COMBINED_METHODS. For example:

import falcon.constants
falcon.constants.COMBINED_METHODS += ['FOO', 'BAR']

• Due to the nature of hooks, if you do use them, you’ll need to define the FAL-
CON_CUSTOM_HTTP_METHODS environment variable as a comma-delimited list of custom methods. For
example:

$ export FALCON_CUSTOM_HTTP_METHODS=FOO,BAR

Once you have used the appropriate method, your custom methods should be active. You then can define request
methods like any other HTTP method:

WSGI

ASGI

Handle the custom FOO method
def on_foo(self, req, resp):

pass

Handle the custom FOO method
async def on_foo(self, req, resp):

pass

5.4.14 Inspect Module

• Using Inspect Functions

• Inspect Functions Reference

• Router Inspection

• Information Classes

• Visitor Classes

256 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#tuple

Falcon Documentation, Release 3.0.1

This module can be used to inspect a Falcon application to obtain information about its registered routes, mid-
dleware objects, static routes, sinks and error handlers. The entire application can be inspected at once using the
inspect_app() function. Additional functions are available for inspecting specific aspects of the app.

A falcon-inspect-app CLI script is also available; it uses the inspect module to print a string representation of
an application, as demonstrated below:

my_module exposes the application as a variable named "app"
$ falcon-inspect-app my_module:app

Falcon App (WSGI)
• Routes:

/foo - MyResponder:
DELETE - on_delete
GET - on_get
POST - on_post

/foo/{id} - MyResponder:
DELETE - on_delete_id
GET - on_get_id
POST - on_post_id

/bar - OtherResponder:
DELETE - on_delete_id
GET - on_get_id
POST - on_post_id

• Middleware (Middleware are independent):
→ MyMiddleware.process_request

→ OtherMiddleware.process_request

MyMiddleware.process_resource
OtherMiddleware.process_resource

Process route responder

OtherMiddleware.process_response
CORSMiddleware.process_response

• Static routes:
/tests/ /path/to/tests [/path/to/test/index.html]
/falcon/ /path/to/falcon

• Sinks:
/sink_cls SinkClass
/sink_fn sinkFn

• Error handlers:
RuntimeError my_runtime_handler

The example above shows how falcon-inspect-app simply outputs the value returned by the AppInfo.
to_string() method. In fact, here is a simple script that returns the same output as the falcon-inspect-app
command:

from falcon import inspect
from my_module import app

app_info = inspect.inspect_app(app)

Equivalent to print(app_info.to_string())
print(app_info)

A more verbose description of the app can be obtained by passing verbose=True to AppInfo.to_string(),
while the default routes added by the framework can be included by passing internal=True. The

5.4. Framework Reference 257

Falcon Documentation, Release 3.0.1

falcon-inspect-app command supports the --verbose and --internal flags to enable these options.

Using Inspect Functions

The values returned by the inspect functions are class instances that contain the relevant information collected from
the application. These objects facilitate programmatic use of the collected data.

To support inspection of applications that use a custom router, the module provides a register_router() func-
tion to register a handler function for the custom router class. Inspection of the default CompiledRouter class is
handled by the inspect_compiled_router() function.

The returned information classes can be explored using the visitor pattern. To create the string representation of the
classes the StringVisitor visitor is used. This class is instantiated automatically when calling str() on an
instance or when using the to_string() method.

Custom visitor implementations can subclass InspectVisitor and use the InspectVisitor.process()
method to visit the classes.

Inspect Functions Reference

This module defines the following inspect functions.

falcon.inspect.inspect_app(app: falcon.app.App)→ falcon.inspect.AppInfo
Inspects an application.

Parameters app (falcon.App) – The application to inspect. Works with both falcon.App
and falcon.asgi.App.

Returns The information regarding the application. Call to_string() on the result to obtain a
human-friendly representation.

Return type AppInfo

falcon.inspect.inspect_routes(app: falcon.app.App)→ List[falcon.inspect.RouteInfo]
Inspects the routes of an application.

Parameters app (falcon.App) – The application to inspect. Works with both falcon.App
and falcon.asgi.App.

Returns A list of route descriptions for the application.

Return type List[RouteInfo]

falcon.inspect.inspect_middleware(app: falcon.app.App)→ falcon.inspect.MiddlewareInfo
Inspects the middleware components of an application.

Parameters app (falcon.App) – The application to inspect. Works with both falcon.App
and falcon.asgi.App.

Returns Information about the app’s middleware components.

Return type MiddlewareInfo

falcon.inspect.inspect_static_routes(app: falcon.app.App) →
List[falcon.inspect.StaticRouteInfo]

Inspects the static routes of an application.

Parameters app (falcon.App) – The application to inspect. Works with both falcon.App
and falcon.asgi.App.

Returns A list of static routes that have been added to the application.

258 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

Return type List[StaticRouteInfo]

falcon.inspect.inspect_sinks(app: falcon.app.App)→ List[falcon.inspect.SinkInfo]
Inspects the sinks of an application.

Parameters app (falcon.App) – The application to inspect. Works with both falcon.App
and falcon.asgi.App.

Returns A list of sinks used by the application.

Return type List[SinkInfo]

falcon.inspect.inspect_error_handlers(app: falcon.app.App) →
List[falcon.inspect.ErrorHandlerInfo]

Inspects the error handlers of an application.

Parameters app (falcon.App) – The application to inspect. Works with both falcon.App
and falcon.asgi.App.

Returns A list of error handlers used by the application.

Return type List[ErrorHandlerInfo]

Router Inspection

The following functions enable route inspection.

falcon.inspect.register_router(router_class)
Register a function to inspect a particular router.

This decorator registers a new function for a custom router class, so that it can be inspected with the function
inspect_routes(). An inspection function takes the router instance used by the application and returns a
list of RouteInfo. Eg:

@register_router(MyRouterClass)
def inspect_my_router(router):

return [RouteInfo('foo', 'bar', '/path/to/foo.py:42', [])]

Parameters router_class (Type) – The router class to register. If already registered an error
will be raised.

falcon.inspect.inspect_compiled_router(router: falcon.routing.compiled.CompiledRouter)
→ List[falcon.inspect.RouteInfo]

Walk an instance of CompiledRouter to return a list of defined routes.

Default route inspector for CompiledRouter.

Parameters router (CompiledRouter) – The router to inspect.

Returns A list of RouteInfo.

Return type List[RouteInfo]

5.4. Framework Reference 259

Falcon Documentation, Release 3.0.1

Information Classes

Information returned by the inspect functions is represented by these classes.

class falcon.inspect.AppInfo(routes: List[falcon.inspect.RouteInfo], middle-
ware: falcon.inspect.MiddlewareInfo, static_routes:
List[falcon.inspect.StaticRouteInfo], sinks:
List[falcon.inspect.SinkInfo], error_handlers:
List[falcon.inspect.ErrorHandlerInfo], asgi: bool)

Describes an application.

Parameters

• routes (List[RouteInfo]) – The routes of the application.

• middleware (MiddlewareInfo) – The middleware information in the application.

• static_routes (List[StaticRouteInfo]) – The static routes of this application.

• sinks (List[SinkInfo]) – The sinks of this application.

• error_handlers (List[ErrorHandlerInfo]) – The error handlers of this appli-
cation.

• asgi (bool) – Whether or not this is an ASGI application.

to_string(verbose=False, internal=False, name='')→ str
Return a string representation of this class.

Parameters

• verbose (bool, optional) – Adds more information. Defaults to False.

• internal (bool, optional) – Also include internal falcon route methods and error
handlers. Defaults to False.

• name (str, optional) – The name of the application, to be output at the beginning
of the text. Defaults to 'Falcon App'.

Returns A string representation of the application.

Return type str

class falcon.inspect.RouteInfo(path: str, class_name: str, source_info: str, methods:
List[falcon.inspect.RouteMethodInfo])

Describes a route.

Parameters

• path (str) – The path of this route.

• class_name (str) – The class name of the responder of this route.

• source_info (str) – The source path where this responder was defined.

• methods (List[RouteMethodInfo]) – List of methods defined in the route.

class falcon.inspect.RouteMethodInfo(method: str, source_info: str, function_name: str, inter-
nal: bool)

Describes a responder method.

Parameters

• method (str) – The HTTP method of this responder.

• source_info (str) – The source path of this function.

260 Chapter 5. Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

• function_name (str) – Name of the function.

• internal (bool) – Whether or not this was a default responder added by the framework.

suffix
The suffix of this route function. This is set to an empty string when the function has no suffix.

Type str

class falcon.inspect.MiddlewareInfo(middleware_tree: fal-
con.inspect.MiddlewareTreeInfo, middleware_classes:
List[falcon.inspect.MiddlewareClassInfo], independent:
bool)

Describes the middleware of the app.

Parameters

• middlewareTree (MiddlewareTreeInfo) – The middleware tree of the app.

• middlewareClasses (List[MiddlewareClassInfo]) – The middleware classes
of the app.

• independent (bool) – Whether or not the middleware components are executed inde-
pendently.

independent_text
Text created from the independent arg.

Type str

class falcon.inspect.MiddlewareTreeInfo(request: List[falcon.inspect.MiddlewareTreeItemInfo],
resource: List[falcon.inspect.MiddlewareTreeItemInfo],
response: List[falcon.inspect.MiddlewareTreeItemInfo])

Describes the middleware methods used by the app.

Parameters

• request (List[MiddlewareTreeItemInfo]) – The process_request methods.

• resource (List[MiddlewareTreeItemInfo]) – The process_resource methods.

• response (List[MiddlewareTreeItemInfo]) – The process_response methods.

class falcon.inspect.MiddlewareClassInfo(name: str, source_info: str, methods:
List[falcon.inspect.MiddlewareMethodInfo])

Describes a middleware class.

Parameters

• name (str) – The name of the middleware class.

• source_info (str) – The source path where the middleware was defined.

• methods (List[MiddlewareMethodInfo]) – List of method defined by the mid-
dleware class.

class falcon.inspect.MiddlewareTreeItemInfo(name: str, class_name: str)
Describes a middleware tree entry.

Parameters

• name (str) – The name of the method.

• class_name (str) – The class name of the method.

class falcon.inspect.MiddlewareMethodInfo(function_name: str, source_info: str)
Describes a middleware method.

5.4. Framework Reference 261

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Parameters

• function_name (str) – Name of the method.

• source_info (str) – The source path of the method.

class falcon.inspect.StaticRouteInfo(prefix: str, directory: str, fallback_filename: Op-
tional[str])

Describes a static route.

Parameters

• path (str) – The prefix of the static route.

• directory (str) – The directory for the static route.

• fallback_filename (str or None) – Fallback filename to serve.

class falcon.inspect.SinkInfo(prefix: str, name: str, source_info: str)
Describes a sink.

Parameters

• prefix (str) – The prefix of the sink.

• name (str) – The name of the sink function or class.

• source_info (str) – The source path where this sink was defined.

class falcon.inspect.ErrorHandlerInfo(error: str, name: str, source_info: str, internal: bool)
Desribes an error handler.

Parameters

• error (name) – The name of the error type.

• name (str) – The name of the handler.

• source_info (str) – The source path where this error handler was defined.

• internal (bool) – Whether or not this is a default error handler added by the framework.

Visitor Classes

The following visitors are used to traverse the information classes.

class falcon.inspect.InspectVisitor
Base visitor class that implements the process method.

Subclasses must implement visit_<name> methods for each supported class.

process(instance: falcon.inspect._Traversable)
Process the instance, by calling the appropriate visit method.

Uses the __visit_name__ attribute of the instance to obtain the method to use.

Parameters instance (_Traversable) – The instance to process.

class falcon.inspect.StringVisitor(verbose=False, internal=False, name='')
Visitor that returns a string representation of the info class.

This is used automatically by calling to_string() on the info class. It can also be used directly by calling
StringVisitor.process(info_instance).

Parameters

• verbose (bool, optional) – Adds more information. Defaults to False.

262 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

• internal (bool, optional) – Also include internal route methods and error handlers
added by the framework. Defaults to False.

• name (str, optional) – The name of the application, to be output at the beginning of
the text. Defaults to 'Falcon App'.

5.4.15 Utilities

• URI

• Date and Time

• HTTP Status

• Async

– Aliases

– Adapters

• Other

URI

URI utilities.

This module provides utility functions to parse, encode, decode, and otherwise manipulate a URI. These functions are
not available directly in the falcon module, and so must be explicitly imported:

from falcon import uri

name, port = uri.parse_host('example.org:8080')

falcon.uri.decode(encoded_uri, unquote_plus=True)
Decode percent-encoded characters in a URI or query string.

This function models the behavior of urllib.parse.unquote_plus, albeit in a faster, more straightforward manner.

Parameters encoded_uri (str) – An encoded URI (full or partial).

Keyword Arguments unquote_plus (bool) – Set to False to retain any plus (‘+’) characters
in the given string, rather than converting them to spaces (default True). Typically you should
set this to False when decoding any part of a URI other than the query string.

Returns A decoded URL. If the URL contains escaped non-ASCII characters, UTF-8 is assumed
per RFC 3986.

Return type str

falcon.uri.encode(uri)
Encodes a full or relative URI according to RFC 3986.

RFC 3986 defines a set of “unreserved” characters as well as a set of “reserved” characters used as delimiters.
This function escapes all other “disallowed” characters by percent-encoding them.

Note: This utility is faster in the average case than the similar quote function found in urlib. It also strives
to be easier to use by assuming a sensible default of allowed characters.

5.4. Framework Reference 263

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Parameters uri (str) – URI or part of a URI to encode.

Returns An escaped version of uri, where all disallowed characters have been percent-encoded.

Return type str

falcon.uri.encode_check_escaped(uri)
Encodes a full or relative URI according to RFC 3986.

RFC 3986 defines a set of “unreserved” characters as well as a set of “reserved” characters used as delimiters.
This function escapes all other “disallowed” characters by percent-encoding them unless they appear to have
been previously encoded. For example, '%26' will not be encoded again as it follows the format of an encoded
value.

Note: This utility is faster in the average case than the similar quote function found in urlib. It also strives
to be easier to use by assuming a sensible default of allowed characters.

Parameters uri (str) – URI or part of a URI to encode.

Returns An escaped version of uri, where all disallowed characters have been percent-encoded.

Return type str

falcon.uri.encode_value(uri)
Encodes a value string according to RFC 3986.

Disallowed characters are percent-encoded in a way that models urllib.parse.quote(safe="~").
However, the Falcon function is faster in the average case than the similar quote function found in urlib. It
also strives to be easier to use by assuming a sensible default of allowed characters.

All reserved characters are lumped together into a single set of “delimiters”, and everything in that set is escaped.

Note: RFC 3986 defines a set of “unreserved” characters as well as a set of “reserved” characters used as
delimiters.

Parameters uri (str) – URI fragment to encode. It is assumed not to cross delimiter boundaries,
and so any reserved URI delimiter characters included in it will be percent-encoded.

Returns An escaped version of uri, where all disallowed characters have been percent-encoded.

Return type str

falcon.uri.encode_value_check_escaped(uri)
Encodes a value string according to RFC 3986.

RFC 3986 defines a set of “unreserved” characters as well as a set of “reserved” characters used as delimiters.
Disallowed characters are percent-encoded in a way that models urllib.parse.quote(safe="~") un-
less they appear to have been previously encoded. For example, '%26' will not be encoded again as it follows
the format of an encoded value.

All reserved characters are lumped together into a single set of “delimiters”, and everything in that set is escaped.

Note: This utility is faster in the average case than the similar quote function found in urlib. It also strives
to be easier to use by assuming a sensible default of allowed characters.

264 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Parameters uri (str) – URI fragment to encode. It is assumed not to cross delimiter boundaries,
and so any reserved URI delimiter characters included in it will be percent-encoded.

Returns An escaped version of uri, where all disallowed characters have been percent-encoded.

Return type str

falcon.uri.parse_host(host, default_port=None)
Parse a canonical ‘host:port’ string into parts.

Parse a host string (which may or may not contain a port) into parts, taking into account that the string may
contain either a domain name or an IP address. In the latter case, both IPv4 and IPv6 addresses are supported.

Parameters host (str) – Host string to parse, optionally containing a port number.

Keyword Arguments default_port (int) – Port number to return when the host string does
not contain one (default None).

Returns A parsed (host, port) tuple from the given host string, with the port converted to an int. If
the host string does not specify a port, default_port is used instead.

Return type tuple

falcon.uri.parse_query_string(query_string, keep_blank=False, csv=True)
Parse a query string into a dict.

Query string parameters are assumed to use standard form-encoding. Only parameters with values are returned.
For example, given ‘foo=bar&flag’, this function would ignore ‘flag’ unless the keep_blank_qs_values option is
set.

Note: In addition to the standard HTML form-based method for specifying lists by repeating a given param
multiple times, Falcon supports a more compact form in which the param may be given a single time but set to
a list of comma-separated elements (e.g., ‘foo=a,b,c’).

When using this format, all commas uri-encoded will not be treated by Falcon as a delimiter. If the client wants
to send a value as a list, it must not encode the commas with the values.

The two different ways of specifying lists may not be mixed in a single query string for the same parameter.

Parameters

• query_string (str) – The query string to parse.

• keep_blank (bool) – Set to True to return fields even if they do not have a value
(default False). For comma-separated values, this option also determines whether or not
empty elements in the parsed list are retained.

• csv – Set to False in order to disable splitting query parameters on , (default True).
Depending on the user agent, encoding lists as multiple occurrences of the same parameter
might be preferable. In this case, setting parse_qs_csv to False will cause the framework
to treat commas as literal characters in each occurring parameter value.

Returns A dictionary of (name, value) pairs, one per query parameter. Note that value may be a
single str, or a list of str.

Return type dict

Raises TypeError – query_string was not a str.

falcon.uri.unquote_string(quoted)
Unquote an RFC 7320 “quoted-string”.

5.4. Framework Reference 265

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#TypeError

Falcon Documentation, Release 3.0.1

Parameters quoted (str) – Original quoted string

Returns unquoted string

Return type str

Raises TypeError – quoted was not a str.

Date and Time

falcon.http_now()
Return the current UTC time as an IMF-fixdate.

Returns The current UTC time as an IMF-fixdate, e.g., ‘Tue, 15 Nov 1994 12:45:26 GMT’.

Return type str

falcon.dt_to_http(dt)
Convert a datetime instance to an HTTP date string.

Parameters dt (datetime) – A datetime instance to convert, assumed to be UTC.

Returns An RFC 1123 date string, e.g.: “Tue, 15 Nov 1994 12:45:26 GMT”.

Return type str

falcon.http_date_to_dt(http_date, obs_date=False)
Convert an HTTP date string to a datetime instance.

Parameters http_date (str) – An RFC 1123 date string, e.g.: “Tue, 15 Nov 1994 12:45:26
GMT”.

Keyword Arguments obs_date (bool) – Support obs-date formats according to RFC 7231, e.g.:
“Sunday, 06-Nov-94 08:49:37 GMT” (default False).

Returns A UTC datetime instance corresponding to the given HTTP date.

Return type datetime

Raises ValueError – http_date doesn’t match any of the available time formats

class falcon.TimezoneGMT
GMT timezone class implementing the datetime.tzinfo interface.

dst(dt)
Return the daylight saving time (DST) adjustment.

Parameters dt (datetime.datetime) – Ignored

Returns DST adjustment for GMT, which is always 0.

Return type datetime.timedelta

tzname(dt)
Get the name of this timezone.

Parameters dt (datetime.datetime) – Ignored

Returns “GMT”

Return type str

utcoffset(dt)
Get the offset from UTC.

Parameters dt (datetime.datetime) – Ignored

266 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime

Falcon Documentation, Release 3.0.1

Returns GMT offset, which is equivalent to UTC and so is aways 0.

Return type datetime.timedelta

HTTP Status

falcon.http_status_to_code(status)
Normalize an HTTP status to an integer code.

This function takes a member of http.HTTPStatus, an HTTP status line string or byte string (e.g., '200
OK'), or an int and returns the corresponding integer code.

An LRU is used to minimize lookup time.

Parameters status – The status code or enum to normalize.

Returns Integer code for the HTTP status (e.g., 200)

Return type int

falcon.code_to_http_status(status)
Normalize an HTTP status to an HTTP status line string.

This function takes a member of http.HTTPStatus, an int status code, an HTTP status line string or byte
string (e.g., '200 OK') and returns the corresponding HTTP status line string.

An LRU is used to minimize lookup time.

Note: Unlike the deprecated get_http_status(), this function will not attempt to coerce a string status
to an integer code, assuming the string already denotes an HTTP status line.

Parameters status – The status code or enum to normalize.

Returns

HTTP status line corresponding to the given code. A newline is not included at the end of
the string.

Return type str

falcon.get_http_status(status_code, default_reason='Unknown')
Get both the http status code and description from just a code.

Warning: As of Falcon 3.0, this method has been deprecated in favor of code_to_http_status().

Parameters

• status_code – integer or string that can be converted to an integer

• default_reason – default text to be appended to the status_code if the lookup does not
find a result

Returns status code e.g. “404 Not Found”

Return type str

Raises ValueError – the value entered could not be converted to an integer

5.4. Framework Reference 267

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/http.html#http.HTTPStatus
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/http.html#http.HTTPStatus
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Falcon Documentation, Release 3.0.1

Async

Aliases

These functions provide simple aliases for those implemented in asyncio, with fallbacks for older versions of
Python.

falcon.get_running_loop()
Return the running event loop. Raise a RuntimeError if there is none.

This function is thread-specific.

falcon.create_task(coro)
Schedule the execution of a coroutine object in a spawn task.

Return a Task object.

Adapters

These functions help traverse the barrier between sync and async code.

async falcon.sync_to_async(func, *args, **kwargs)
Schedule a synchronous callable on the loop’s default executor and await the result.

This helper makes it easier to call functions that can not be ported to use async natively (e.g., functions exported
by a database library that does not yet support asyncio).

To execute blocking operations safely, without stalling the async loop, the wrapped callable is scheduled to run
in the background, on a separate thread, when the wrapper is called.

The default executor for the running loop is used to schedule the synchronous callable.

Warning: This helper can only be used to execute thread-safe callables. If the callable is not thread-safe,
it can be executed serially by first wrapping it with wrap_sync_to_async(), and then executing the
wrapper directly.

Warning: Calling a synchronous function safely from an asyncio event loop adds a fair amount of overhead
to the function call, and should only be used when a native async library is not available for the operation
you wish to perform.

Parameters

• func (callable) – Function, method, or other callable to wrap

• *args – All additional arguments are passed through to the callable.

Keyword Arguments **kwargs – All keyword arguments are passed through to the callable.

Returns An awaitable coroutine function that wraps the synchronous callable.

Return type function

falcon.wrap_sync_to_async(func, threadsafe=None)→ Callable
Wrap a callable in a coroutine that executes the callable in the background.

268 Chapter 5. Documentation

https://docs.python.org/3/library/asyncio.html#module-asyncio

Falcon Documentation, Release 3.0.1

This helper makes it easier to call functions that can not be ported to use async natively (e.g., functions exported
by a database library that does not yet support asyncio).

To execute blocking operations safely, without stalling the async loop, the wrapped callable is scheduled to run
in the background, on a separate thread, when the wrapper is called.

Normally, the default executor for the running loop is used to schedule the synchronous callable. If the callable
is not thread-safe, it can be scheduled serially in a global single-threaded executor.

Warning: Wrapping a synchronous function safely adds a fair amount of overhead to the function call, and
should only be used when a native async library is not available for the operation you wish to perform.

Parameters func (callable) – Function, method, or other callable to wrap

Keyword Arguments threadsafe (bool) – Set to False when the callable is not thread-safe
(default True). When this argument is False, the wrapped callable will be scheduled to run
serially in a global single-threaded executor.

Returns An awaitable coroutine function that wraps the synchronous callable.

Return type function

falcon.wrap_sync_to_async_unsafe(func)→ Callable
Wrap a callable in a coroutine that executes the callable directly.

This helper makes it easier to use synchronous callables with ASGI apps. However, it is considered “unsafe”
because it calls the wrapped function directly in the same thread as the asyncio loop. Generally, you should use
wrap_sync_to_async() instead.

Warning: This helper is only to be used for functions that do not perform any blocking I/O or lengthy CPU-
bound operations, since the entire async loop will be blocked while the wrapped function is executed. For
a safer, non-blocking alternative that runs the function in a thread pool executor, use sync_to_async()
instead.

Parameters func (callable) – Function, method, or other callable to wrap

Returns An awaitable coroutine function that wraps the synchronous callable.

Return type function

falcon.async_to_sync(coroutine, *args, **kwargs)
Invoke a coroutine function from a synchronous caller.

This method can be used to invoke an asynchronous task from a synchronous context. The coroutine will be
scheduled to run on the current event loop for the current OS thread. If an event loop is not already running, one
will be created.

Warning: This method is very inefficient and is intended primarily for testing and prototyping.

Additional arguments not mentioned below are bound to the given coroutine function via functools.
partial.

Parameters

• coroutine – A coroutine function to invoke.

5.4. Framework Reference 269

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial

Falcon Documentation, Release 3.0.1

• *args – Additional args are passed through to the coroutine function.

Keyword Arguments **kwargs – Additional args are passed through to the coroutine function.

falcon.runs_sync(coroutine)
Transform a coroutine function into a synchronous method.

This is achieved by always invoking the decorated coroutine function via async_to_sync().

Warning: This decorator is very inefficient and should only be used for adapting asynchronous test func-
tions for use with synchronous test runners such as pytest or the unittest module.

It will create an event loop for the current thread if one is not already running.

Parameters coroutine – A coroutine function to masquerade as a synchronous one.

Returns A synchronous function.

Return type callable

Other

falcon.deprecated(instructions, is_property=False)
Flag a method as deprecated.

This function returns a decorator which can be used to mark deprecated functions. Applying this decorator will
result in a warning being emitted when the function is used.

Parameters

• instructions (str) – Specific guidance for the developer, e.g.: ‘Please migrate to
add_proxy(. . .)’

• is_property (bool) – If the deprecated object is a property. It will omit the (...)
from the generated documentation

falcon.to_query_str(params, comma_delimited_lists=True, prefix=True)
Convert a dictionary of parameters to a query string.

Parameters

• params (dict) – A dictionary of parameters, where each key is a parameter name, and
each value is either a str or something that can be converted into a str, or a list of such
values. If a list, the value will be converted to a comma-delimited string of values (e.g.,
‘thing=1,2,3’).

• comma_delimited_lists (bool) – Set to False to encode list values by specifying
multiple instances of the parameter (e.g., ‘thing=1&thing=2&thing=3’). Otherwise, param-
eters will be encoded as comma-separated values (e.g., ‘thing=1,2,3’). Defaults to True.

• prefix (bool) – Set to False to exclude the ‘?’ prefix in the result string (default
True).

Returns A URI query string, including the ‘?’ prefix (unless prefix is False), or an empty string if
no params are given (the dict is empty).

Return type str

falcon.get_bound_method(obj, method_name)
Get a bound method of the given object by name.

270 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Parameters

• obj – Object on which to look up the method.

• method_name – Name of the method to retrieve.

Returns Bound method, or None if the method does not exist on the object.

Raises AttributeError – The method exists, but it isn’t bound (most likely a class was passed,
rather than an instance of that class).

falcon.secure_filename(filename)
Sanitize the provided filename to contain only ASCII characters.

Only ASCII alphanumerals, '.', '-' and '_' are allowed for maximum portability and safety wrt using this
name as a filename on a regular file system. All other characters will be replaced with an underscore ('_').

Note: The filename is normalized to the Unicode NKFD form prior to ASCII conversion in order to extract
more alphanumerals where a decomposition is available. For instance:

>>> secure_filename('Bold Digit ')
'Bold_Digit_1'
>>> secure_filename('Ångström unit physics.pdf')
'A_ngstro_m_unit_physics.pdf'

Parameters filename (str) – Arbitrary filename input from the request, such as a multipart
form filename field.

Returns The sanitized filename.

Return type str

Raises ValueError – the provided filename is an empty string.

falcon.is_python_func(func)
Determine if a function or method uses a standard Python type.

This helper can be used to check a function or method to determine if it uses a standard Python type, as opposed
to an implementation-specific native extension type.

For example, because Cython functions are not standard Python functions, is_python_func(f) will return
False when f is a reference to a cythonized function or method.

Parameters func – The function object to check.

Returns True if the function or method uses a standard Python type; False otherwise.

Return type bool

class falcon.Context
Convenience class to hold contextual information in its attributes.

This class is used as the default Request and Response context type (see Request.context_type and
Response.context_type, respectively).

In Falcon versions prior to 2.0, the default context type was dict. To ease the migration to attribute-based
context object approach, this class also implements the mapping interface; that is, object attributes are linked to
dictionary items, and vice versa. For instance:

5.4. Framework Reference 271

https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

>>> context = falcon.Context()
>>> context.cache_strategy = 'lru'
>>> context.get('cache_strategy')
'lru'
>>> 'cache_strategy' in context
True

class falcon.ETag
Convenience class to represent a parsed HTTP entity-tag.

This class is simply a subclass of str with a few helper methods and an extra attribute to indicate whether the
entity-tag is weak or strong. The value of the string is equivalent to what RFC 7232 calls an “opaque-tag”, i.e.
an entity-tag sans quotes and the weakness indicator.

Note: Given that a weak entity-tag comparison can be performed by using the == operator (per the example
below), only a strong_compare() method is provided.

Here is an example on_get() method that demonstrates how to use instances of this class:

def on_get(self, req, resp):
content_etag = self._get_content_etag()
for etag in (req.if_none_match or []):

if etag == '*' or etag == content_etag:
resp.status = falcon.HTTP_304
return

-- snip --

resp.etag = content_etag
resp.status = falcon.HTTP_200

(See also: RFC 7232)

is_weak
True if the entity-tag is weak, otherwise False.

Type bool

dumps()
Serialize the ETag to a string suitable for use in a precondition header.

(See also: RFC 7232, Section 2.3)

Returns An opaque quoted string, possibly prefixed by a weakness indicator W/.

Return type str

classmethod loads(etag_str)
Deserialize a single entity-tag string from a precondition header.

Note: This method is meant to be used only for parsing a single entity-tag. It can not be used to parse a
comma-separated list of values.

(See also: RFC 7232, Section 2.3)

Parameters etag_str (str) – An ASCII string representing a single entity-tag, as defined
by RFC 7232.

272 Chapter 5. Documentation

https://docs.python.org/3/library/functions.html#bool
https://tools.ietf.org/html/rfc7232#section-2.3
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc7232#section-2.3
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Returns An instance of ~.ETag representing the parsed entity-tag.

Return type ETag

strong_compare(other)
Perform a strong entity-tag comparison.

Two entity-tags are equivalent if both are not weak and their opaque-tags match character-by-character.

(See also: RFC 7232, Section 2.3.2)

Parameters

• other (ETag) – The other ETag to which you are comparing

• one. (this) –

Returns True if the two entity-tags match, otherwise False.

Return type bool

5.4.16 Testing Helpers

• Simulating Requests

– Main Interface

– Standalone Methods

– Low-Level Utils

• Other Helpers

– Test Cases

– Functions

Functional testing framework for Falcon apps and Falcon itself.

Falcon’s testing module contains various test classes and utility functions to support functional testing for both Falcon-
based apps and the Falcon framework itself.

The testing framework supports both unittest and pytest:

unittest

from falcon import testing
import myapp

class MyTestCase(testing.TestCase):
def setUp(self):

super(MyTestCase, self).setUp()

Assume the hypothetical `myapp` package has a
function called `create()` to initialize and
return a `falcon.App` instance.
self.app = myapp.create()

(continues on next page)

5.4. Framework Reference 273

https://tools.ietf.org/html/rfc7232#section-2.3.2
https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

(continued from previous page)

class TestMyApp(MyTestCase):
def test_get_message(self):

doc = {'message': 'Hello world!'}

result = self.simulate_get('/messages/42')
self.assertEqual(result.json, doc)

pytest

from falcon import testing
import pytest

import myapp

Depending on your testing strategy and how your application
manages state, you may be able to broaden the fixture scope
beyond the default 'function' scope used in this example.

@pytest.fixture()
def client():

Assume the hypothetical `myapp` package has a function called
`create()` to initialize and return a `falcon.App` instance.
return testing.TestClient(myapp.create())

def test_get_message(client):
doc = {'message': 'Hello world!'}

result = client.simulate_get('/messages/42')
assert result.json == doc

Simulating Requests

Main Interface

class falcon.testing.TestClient(app, headers=None)
Simulate requests to a WSGI or ASGI application.

This class provides a contextual wrapper for Falcon’s simulate_*() test functions. It lets you replace this:

simulate_get(app, '/messages')
simulate_head(app, '/messages')

with this:

client = TestClient(app)
client.simulate_get('/messages')
client.simulate_head('/messages')

274 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

Note: The methods all call self.simulate_request() for convenient overriding of request preparation
by child classes.

Note: In the case of an ASGI request, this class will simulate the entire app lifecycle in a single shot, including
lifespan and client disconnect events. In order to simulate multiple interleaved requests, or to test a streaming
endpoint (such as one that emits server-sent events), ASGIConductor can be used to more precisely control
the app lifecycle.

An instance of ASGIConductor may be instantiated directly, or obtained from an instance of TestClient
using the context manager pattern, as per the following example:

client = falcon.testing.TestClient(app)

-- snip --

async with client as conductor:
async with conductor.simulate_get_stream('/events') as result:

pass

Parameters app (callable) – A WSGI or ASGI application to target when simulating requests

Keyword Arguments headers (dict) – Default headers to set on every request (default None).
These defaults may be overridden by passing values for the same headers to one of the
simulate_*() methods.

app
The app that this client instance was configured to use.

simulate_delete(path='/', **kwargs)→ falcon.testing.client._ResultBase
Simulate a DELETE request to a WSGI application.

(See also: falcon.testing.simulate_delete())

simulate_get(path='/', **kwargs)→ falcon.testing.client._ResultBase
Simulate a GET request to a WSGI application.

(See also: falcon.testing.simulate_get())

simulate_head(path='/', **kwargs)→ falcon.testing.client._ResultBase
Simulate a HEAD request to a WSGI application.

(See also: falcon.testing.simulate_head())

simulate_options(path='/', **kwargs)→ falcon.testing.client._ResultBase
Simulate an OPTIONS request to a WSGI application.

(See also: falcon.testing.simulate_options())

simulate_patch(path='/', **kwargs)→ falcon.testing.client._ResultBase
Simulate a PATCH request to a WSGI application.

(See also: falcon.testing.simulate_patch())

simulate_post(path='/', **kwargs)→ falcon.testing.client._ResultBase
Simulate a POST request to a WSGI application.

(See also: falcon.testing.simulate_post())

5.4. Framework Reference 275

https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

simulate_put(path='/', **kwargs)→ falcon.testing.client._ResultBase
Simulate a PUT request to a WSGI application.

(See also: falcon.testing.simulate_put())

simulate_request(*args, **kwargs)→ falcon.testing.client._ResultBase
Simulate a request to a WSGI application.

Wraps falcon.testing.simulate_request() to perform a WSGI request directly against
self.app. Equivalent to:

falcon.testing.simulate_request(self.app, *args, **kwargs)

class falcon.testing.ASGIConductor(app, headers=None)
Test conductor for ASGI apps.

This class provides more control over the lifecycle of a simulated request as compared to TestClient. In ad-
dition, the conductor’s asynchronous interface affords interleaved requests and the testing of streaming protocols
such as Server-Sent Events (SSE) and WebSocket.

ASGIConductor is implemented as a context manager. Upon entering and exiting the context, the appropriate
ASGI lifespan events will be simulated.

Within the context, HTTP requests can be simulated using an interface that is similar to TestClient, except
that all simulate_*() methods are coroutines:

async with testing.ASGIConductor(some_app) as conductor:
async def post_events():

for i in range(100):
await conductor.simulate_post('/events', json={'id': i}):
await asyncio.sleep(0.01)

async def get_events_sse():
Here, we will get only some of the single server-sent events
because the non-streaming method is "single-shot". In other
words, simulate_get() will emit a client disconnect event
into the app before returning.
result = await conductor.simulate_get('/events')

Alternatively, we can use simulate_get_stream() as a context
manager to perform a series of reads on the result body that
are interleaved with the execution of the post_events()
coroutine.
async with conductor.simulate_get_stream('/events') as sr:

while some_condition:
Read next body chunk that was received (if any).
chunk = await sr.stream.read()

if chunk:
TODO: Do something with the chunk
pass

Exiting the context causes the request event emitter to
begin emitting ``'http.disconnect'`` events and then awaits
the completion of the asyncio task that is running the
simulated ASGI request.

asyncio.gather(post_events(), get_events_sse())

276 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

Note: Because the ASGIConductor interface uses coroutines, it cannot be used directly with synchronous
testing frameworks such as pytest.

As a workaround, the test can be adapted by wrapping it in an inline async function and then invoking it via
falcon.async_to_sync() or decorating the test function with falcon.runs_sync().

Alternatively, you can try searching PyPI to see if an async plugin is available for your testing framework of
choice. For example, the pytest-asyncio plugin is available for pytest users.

Parameters app (callable) – An ASGI application to target when simulating requests.

Keyword Arguments headers (dict) – Default headers to set on every request (default None).
These defaults may be overridden by passing values for the same headers to one of the
simulate_*() methods.

app
The app that this client instance was configured to use.

async simulate_delete(path='/', **kwargs)→ falcon.testing.client._ResultBase
Simulate a DELETE request to an ASGI application.

(See also: falcon.testing.simulate_delete())

async simulate_get(path='/', **kwargs)→ falcon.testing.client._ResultBase
Simulate a GET request to an ASGI application.

(See also: falcon.testing.simulate_get())

simulate_get_stream(path='/', **kwargs)
Simulate a GET request to an ASGI application with a streamed response.

(See also: falcon.testing.simulate_get() for a list of supported keyword arguments.)

This method returns an async context manager that can be used to obtain a managed StreamedResult
instance. Exiting the context will automatically finalize the result object, causing the request event emitter
to begin emitting 'http.disconnect' events and then await the completion of the task that is running
the simulated ASGI request.

In the following example, a series of streamed body chunks are read from the response:

async with conductor.simulate_get_stream('/events') as sr:
while some_condition:

Read next body chunk that was received (if any).
chunk = await sr.stream.read()

if chunk:
TODO: Do something with the chunk. For example,
a series of server-sent events could be validated
by concatenating the chunks and splitting on
double-newlines to obtain individual events.
pass

async simulate_head(path='/', **kwargs)→ falcon.testing.client._ResultBase
Simulate a HEAD request to an ASGI application.

(See also: falcon.testing.simulate_head())

async simulate_options(path='/', **kwargs)→ falcon.testing.client._ResultBase
Simulate an OPTIONS request to an ASGI application.

5.4. Framework Reference 277

https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

(See also: falcon.testing.simulate_options())

async simulate_patch(path='/', **kwargs)→ falcon.testing.client._ResultBase
Simulate a PATCH request to an ASGI application.

(See also: falcon.testing.simulate_patch())

async simulate_post(path='/', **kwargs)→ falcon.testing.client._ResultBase
Simulate a POST request to an ASGI application.

(See also: falcon.testing.simulate_post())

async simulate_put(path='/', **kwargs)→ falcon.testing.client._ResultBase
Simulate a PUT request to an ASGI application.

(See also: falcon.testing.simulate_put())

async simulate_request(*args, **kwargs)→ falcon.testing.client._ResultBase
Simulate a request to an ASGI application.

Wraps falcon.testing.simulate_request() to perform a WSGI request directly against
self.app. Equivalent to:

falcon.testing.simulate_request(self.app, *args, **kwargs)

simulate_ws(path='/', **kwargs)
Simulate a WebSocket connection to an ASGI application.

All keyword arguments are passed through to falcon.testing.create_scope_ws().

This method returns an async context manager that can be used to obtain a managed falcon.testing.
ASGIWebSocketSimulator instance. Exiting the context will simulate a close on the WebSocket (if
not already closed) and await the completion of the task that is running the simulated ASGI request.

In the following example, a series of WebSocket TEXT events are received from the ASGI app:

async with conductor.simulate_ws('/events') as ws:
while some_condition:

message = await ws.receive_text()

class falcon.testing.Result(iterable, status, headers)
Encapsulates the result of a simulated request.

Parameters

• iterable (iterable) – An iterable that yields zero or more bytestrings, per PEP-3333

• status (str) – An HTTP status string, including status code and reason string

• headers (list) – A list of (header_name, header_value) tuples, per PEP-3333

status
HTTP status string given in the response

Type str

status_code
The code portion of the HTTP status string

Type int

headers
A case-insensitive dictionary containing all the headers in the response, except for cookies, which may be
accessed via the cookies attribute.

278 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

Note: Multiple instances of a header in the response are currently not supported; it is unspecified which
value will “win” and be represented in headers.

Type CaseInsensitiveDict

cookies
A dictionary of falcon.testing.Cookie values parsed from the response, by name.

Type dict

encoding
Text encoding of the response body, or None if the encoding can not be determined.

Type str

content
Raw response body, or bytes if the response body was empty.

Type bytes

text
Decoded response body of type str. If the content type does not specify an encoding, UTF-8 is assumed.

Type str

json
Deserialized JSON body. Will be None if the body has no content to deserialize. Otherwise, raises an
error if the response is not valid JSON.

Type JSON serializable

class falcon.testing.StreamedResult(body_chunks, status, headers, task, req_event_emitter)
Encapsulates the streamed result of an ASGI request.

Parameters

• body_chunks (list) – A list of body chunks. This list may be appended to after a result
object has been instantiated.

• status (str) – An HTTP status string, including status code and reason string

• headers (list) – A list of (header_name, header_value) tuples, per PEP-3333

• task (asyncio.Task) – The scheduled simulated request which may or may not have
already finished. finalize() will await the task before returning.

• req_event_emitter (ASGIRequestEventEmitter) – A reference to the event
emitter used to simulate events sent to the ASGI application via its receive() method.
finalize() will cause the event emitter to simulate an 'http.disconnect' event
before returning.

status
HTTP status string given in the response

Type str

status_code
The code portion of the HTTP status string

Type int

5.4. Framework Reference 279

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/asyncio-task.html#asyncio.Task
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

headers
A case-insensitive dictionary containing all the headers in the response, except for cookies, which may be
accessed via the cookies attribute.

Note: Multiple instances of a header in the response are currently not supported; it is unspecified which
value will “win” and be represented in headers.

Type CaseInsensitiveDict

cookies
A dictionary of falcon.testing.Cookie values parsed from the response, by name.

Type dict

encoding
Text encoding of the response body, or None if the encoding can not be determined.

Type str

stream
Raw response body, as a byte stream.

Type ResultStream

async finalize()
Finalize the encapsulated simulated request.

This method causes the request event emitter to begin emitting 'http.disconnect' events and then
awaits the completion of the asyncio task that is running the simulated ASGI request.

class falcon.testing.ResultBodyStream(chunks: Sequence[bytes])
Simple forward-only reader for a streamed test result body.

Parameters chunks (list) – Reference to a list of body chunks that may continue to be appended
to as more body events are collected.

async read()→ bytes
Read any data that has been collected since the last call.

Returns data that has been collected since the last call, or an empty byte string if no additional
data is available.

Return type bytes

class falcon.testing.ASGIWebSocketSimulator
Simulates a WebSocket client for testing a Falcon ASGI app.

This class provides a way to test WebSocket endpoints in a Falcon ASGI app without having to interact with an
actual ASGI server. While it is certainly important to test against a real server, a number of functional tests can
be satisfied more efficiently and transparently with a simulated connection.

Note: The ASGIWebSocketSimulator class is not designed to be instantiated directly; rather it should be
obtained via simulate_ws().

ready
True if the WebSocket connection has been accepted and the client is still connected, False otherwise.

Type bool

280 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

closed
True if the WebSocket connection has been denied or closed by the app, or the client has disconnected.

Type bool

close_code
The WebSocket close code provided by the app if the connection is closed, or None if the connection is
open.

Type int

subprotocol
The subprotocol the app wishes to accept, or None if not specified.

Type str

headers
An iterable of [name, value] two-item iterables, where name is the header name, and value is the
header value for each header returned by the app when it accepted the WebSocket connection. This prop-
erty resolves to None if the connection has not been accepted.

Type Iterable[Iterable[bytes]]

async close(code: Optional[int] = None)
Close the simulated connection.

Keyword Arguments code (int) – The WebSocket close code to send to the application per
the WebSocket spec (default: 1000).

async receive_data()→ bytes
Receive a message from the app with a binary data payload.

Awaiting this coroutine will block until a message is available or the WebSocket is disconnected.

async receive_json()→ object
Receive a message from the app with a JSON-encoded TEXT payload.

Awaiting this coroutine will block until a message is available or the WebSocket is disconnected.

async receive_msgpack()→ object
Receive a message from the app with a MessagePack-encoded BINARY payload.

Awaiting this coroutine will block until a message is available or the WebSocket is disconnected.

async receive_text()→ str
Receive a message from the app with a Unicode string payload.

Awaiting this coroutine will block until a message is available or the WebSocket is disconnected.

async send_data(payload: Union[bytes, bytearray, memoryview])
Send a message to the app with a binary data payload.

Parameters payload (Union[bytes, bytearray, memoryview]) – The binary
data to send.

async send_json(media: object)
Send a message to the app with a JSON-encoded payload.

Parameters media – A JSON-encodable object to send as a TEXT (0x01) payload.

async send_msgpack(media: object)
Send a message to the app with a MessagePack-encoded payload.

Parameters media – A MessagePack-encodable object to send as a BINARY (0x02) payload.

5.4. Framework Reference 281

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Falcon Documentation, Release 3.0.1

async send_text(payload: str)
Send a message to the app with a Unicode string payload.

Parameters payload (str) – The string to send.

async wait_ready(timeout: Optional[int] = 5)
Wait until the connection has been accepted or denied.

This coroutine can be awaited in order to pause execution until the app has accepted or denied the connec-
tion. In the latter case, an error will be raised to the caller.

Keyword Arguments timeout (int) – Number of seconds to wait before giving up and rais-
ing an error (default: 5).

class falcon.testing.Cookie(morsel)
Represents a cookie returned by a simulated request.

Parameters morsel – A Morsel object from which to derive the cookie data.

name
The cookie’s name.

Type str

value
The value of the cookie.

Type str

expires
Expiration timestamp for the cookie, or None if not specified.

Type datetime.datetime

path
The path prefix to which this cookie is restricted, or None if not specified.

Type str

domain
The domain to which this cookie is restricted, or None if not specified.

Type str

max_age
The lifetime of the cookie in seconds, or None if not specified.

Type int

secure
Whether or not the cookie may only only be transmitted from the client via HTTPS.

Type bool

http_only
Whether or not the cookie may only be included in unscripted requests from the client.

Type bool

282 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

Standalone Methods

falcon.testing.simulate_get(app, path, **kwargs)→ falcon.testing.client._ResultBase
Simulate a GET request to a WSGI or ASGI application.

Equivalent to:

simulate_request(app, 'GET', path, **kwargs)

Note: In the case of an ASGI request, this method will simulate the entire app lifecycle in a single shot,
including lifespan and client disconnect events. In order to simulate multiple interleaved requests, or to test a
streaming endpoint (such as one that emits server-sent events), ASGIConductor can be used to more precisely
control the app lifecycle.

Parameters

• app (callable) – The application to call

• path (str) – The URL path to request

Note: The path may contain a query string. However, neither query_string nor params may
be specified in this case.

Keyword Arguments

• root_path (str) – The initial portion of the request URL’s “path” that corresponds to
the application object, so that the application knows its virtual “location”. This defaults to
the empty string, indicating that the application corresponds to the “root” of the server.

• protocol – The protocol to use for the URL scheme (default: ‘http’)

• port (int) – The TCP port to simulate. Defaults to the standard port used by the given
scheme (i.e., 80 for ‘http’ and 443 for ‘https’). A string may also be passed, as long as it can
be parsed as an int.

• params (dict) – A dictionary of query string parameters, where each key is a parameter
name, and each value is either a str or something that can be converted into a str, or a
list of such values. If a list, the value will be converted to a comma-delimited string of
values (e.g., ‘thing=1,2,3’).

• params_csv (bool) – Set to True to encode list values in query string params as
comma-separated values (e.g., ‘thing=1,2,3’). Otherwise, parameters will be encoded by
specifying multiple instances of the parameter (e.g., ‘thing=1&thing=2&thing=3’). Defaults
to False.

• query_string (str) – A raw query string to include in the request (default: None). If
specified, overrides params.

• headers (dict) – Extra headers as a dict-like (Mapping) object, or an iterable yielding
a series of two-member (name, value) iterables. Each pair of strings provides the name and
value for an HTTP header. If desired, multiple header values may be combined into a single
(name, value) pair by joining the values with a comma when the header in question supports
the list format (see also RFC 7230 and RFC 7231). Header names are not case-sensitive.

Note: If a User-Agent header is not provided, it will default to:

5.4. Framework Reference 283

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

f'falcon-client/{falcon.__version__}'

• file_wrapper (callable) – Callable that returns an iterable, to be used as the value
for wsgi.file_wrapper in the WSGI environ (default: None). This can be used to test high-
performance file transmission when resp.stream is set to a file-like object.

• host (str) – A string to use for the hostname part of the fully qualified request URL
(default: ‘falconframework.org’)

• remote_addr (str) – A string to use as the remote IP address for the request (default:
‘127.0.0.1’). For WSGI, this corresponds to the ‘REMOTE_ADDR’ environ variable. For
ASGI, this corresponds to the IP address used for the ‘client’ field in the connection scope.

• http_version (str) – The HTTP version to simulate. Must be either ‘2’, ‘2.0’, 1.1’,
‘1.0’, or ‘1’ (default ‘1.1’). If set to ‘1.0’, the Host header will not be added to the scope.

• wsgierrors (io) – The stream to use as wsgierrors in the WSGI environ (default sys.
stderr)

• asgi_chunk_size (int) – The maximum number of bytes that will be sent to the ASGI
app in a single 'http.request' event (default 4096).

• asgi_disconnect_ttl (int) – The maximum number of seconds to wait since the
request was initiated, before emitting an 'http.disconnect' event when the app calls
the receive() function (default 300). Set to 0 to simulate an immediate disconnection without
first emitting 'http.request'.

• extras (dict) – Additional values to add to the WSGI environ dictionary or the ASGI
scope for the request (default: None)

• cookies (dict) – Cookies as a dict-like (Mapping) object, or an iterable yielding a series
of two-member (name, value) iterables. Each pair of items provides the name and value for
the ‘Set-Cookie’ header.

Returns The result of the request

Return type Result

falcon.testing.simulate_head(app, path, **kwargs)→ falcon.testing.client._ResultBase
Simulate a HEAD request to a WSGI or ASGI application.

Equivalent to:

simulate_request(app, 'HEAD', path, **kwargs)

Note: In the case of an ASGI request, this method will simulate the entire app lifecycle in a single shot,
including lifespan and client disconnect events. In order to simulate multiple interleaved requests, or to test a
streaming endpoint (such as one that emits server-sent events), ASGIConductor can be used to more precisely
control the app lifecycle.

Parameters

• app (callable) – The application to call

• path (str) – The URL path to request

284 Chapter 5. Documentation

https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#module-io
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Note: The path may contain a query string. However, neither query_string nor params may
be specified in this case.

Keyword Arguments

• root_path (str) – The initial portion of the request URL’s “path” that corresponds to
the application object, so that the application knows its virtual “location”. This defaults to
the empty string, indicating that the application corresponds to the “root” of the server.

• protocol – The protocol to use for the URL scheme (default: ‘http’)

• port (int) – The TCP port to simulate. Defaults to the standard port used by the given
scheme (i.e., 80 for ‘http’ and 443 for ‘https’). A string may also be passed, as long as it can
be parsed as an int.

• params (dict) – A dictionary of query string parameters, where each key is a parameter
name, and each value is either a str or something that can be converted into a str, or a
list of such values. If a list, the value will be converted to a comma-delimited string of
values (e.g., ‘thing=1,2,3’).

• params_csv (bool) – Set to True to encode list values in query string params as
comma-separated values (e.g., ‘thing=1,2,3’). Otherwise, parameters will be encoded by
specifying multiple instances of the parameter (e.g., ‘thing=1&thing=2&thing=3’). Defaults
to False.

• query_string (str) – A raw query string to include in the request (default: None). If
specified, overrides params.

• headers (dict) – Extra headers as a dict-like (Mapping) object, or an iterable yielding
a series of two-member (name, value) iterables. Each pair of strings provides the name and
value for an HTTP header. If desired, multiple header values may be combined into a single
(name, value) pair by joining the values with a comma when the header in question supports
the list format (see also RFC 7230 and RFC 7231). Header names are not case-sensitive.

Note: If a User-Agent header is not provided, it will default to:

f'falcon-client/{falcon.__version__}'

• host (str) – A string to use for the hostname part of the fully qualified request URL
(default: ‘falconframework.org’)

• remote_addr (str) – A string to use as the remote IP address for the request (default:
‘127.0.0.1’). For WSGI, this corresponds to the ‘REMOTE_ADDR’ environ variable. For
ASGI, this corresponds to the IP address used for the ‘client’ field in the connection scope.

• http_version (str) – The HTTP version to simulate. Must be either ‘2’, ‘2.0’, 1.1’,
‘1.0’, or ‘1’ (default ‘1.1’). If set to ‘1.0’, the Host header will not be added to the scope.

• wsgierrors (io) – The stream to use as wsgierrors in the WSGI environ (default sys.
stderr)

• asgi_chunk_size (int) – The maximum number of bytes that will be sent to the ASGI
app in a single 'http.request' event (default 4096).

• asgi_disconnect_ttl (int) – The maximum number of seconds to wait since the
request was initiated, before emitting an 'http.disconnect' event when the app calls

5.4. Framework Reference 285

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#module-io
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

the receive() function (default 300). Set to 0 to simulate an immediate disconnection without
first emitting 'http.request'.

• extras (dict) – Additional values to add to the WSGI environ dictionary or the ASGI
scope for the request (default: None)

• cookies (dict) – Cookies as a dict-like (Mapping) object, or an iterable yielding a series
of two-member (name, value) iterables. Each pair of items provides the name and value for
the ‘Set-Cookie’ header.

Returns The result of the request

Return type Result

falcon.testing.simulate_post(app, path, **kwargs)→ falcon.testing.client._ResultBase
Simulate a POST request to a WSGI or ASGI application.

Equivalent to:

simulate_request(app, 'POST', path, **kwargs)

Note: In the case of an ASGI request, this method will simulate the entire app lifecycle in a single shot,
including lifespan and client disconnect events. In order to simulate multiple interleaved requests, or to test a
streaming endpoint (such as one that emits server-sent events), ASGIConductor can be used to more precisely
control the app lifecycle.

Parameters

• app (callable) – The application to call

• path (str) – The URL path to request

Keyword Arguments

• root_path (str) – The initial portion of the request URL’s “path” that corresponds to
the application object, so that the application knows its virtual “location”. This defaults to
the empty string, indicating that the application corresponds to the “root” of the server.

• protocol – The protocol to use for the URL scheme (default: ‘http’)

• port (int) – The TCP port to simulate. Defaults to the standard port used by the given
scheme (i.e., 80 for ‘http’ and 443 for ‘https’). A string may also be passed, as long as it can
be parsed as an int.

• params (dict) – A dictionary of query string parameters, where each key is a parameter
name, and each value is either a str or something that can be converted into a str, or a
list of such values. If a list, the value will be converted to a comma-delimited string of
values (e.g., ‘thing=1,2,3’).

• params_csv (bool) – Set to True to encode list values in query string params as
comma-separated values (e.g., ‘thing=1,2,3’). Otherwise, parameters will be encoded by
specifying multiple instances of the parameter (e.g., ‘thing=1&thing=2&thing=3’). Defaults
to False.

• query_string (str) – A raw query string to include in the request (default: None). If
specified, overrides params.

• content_type (str) – The value to use for the Content-Type header in the request. If
specified, this value will take precedence over any value set for the Content-Type header in

286 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

the headers keyword argument. The falcon module provides a number of constants for
common media types.

• headers (dict) – Extra headers as a dict-like (Mapping) object, or an iterable yielding
a series of two-member (name, value) iterables. Each pair of strings provides the name and
value for an HTTP header. If desired, multiple header values may be combined into a single
(name, value) pair by joining the values with a comma when the header in question supports
the list format (see also RFC 7230 and RFC 7231). Header names are not case-sensitive.

Note: If a User-Agent header is not provided, it will default to:

f'falcon-client/{falcon.__version__}'

• body (str) – The body of the request (default ‘’). The value will be encoded as UTF-8 in
the WSGI environ. Alternatively, a byte string may be passed, in which case it will be used
as-is.

• json (JSON serializable) – A JSON document to serialize as the body of the re-
quest (default: None). If specified, overrides body and sets the Content-Type header to
'application/json', overriding any value specified by either the content_type or
headers arguments.

• file_wrapper (callable) – Callable that returns an iterable, to be used as the value
for wsgi.file_wrapper in the WSGI environ (default: None). This can be used to test high-
performance file transmission when resp.stream is set to a file-like object.

• host (str) – A string to use for the hostname part of the fully qualified request URL
(default: ‘falconframework.org’)

• remote_addr (str) – A string to use as the remote IP address for the request (default:
‘127.0.0.1’). For WSGI, this corresponds to the ‘REMOTE_ADDR’ environ variable. For
ASGI, this corresponds to the IP address used for the ‘client’ field in the connection scope.

• http_version (str) – The HTTP version to simulate. Must be either ‘2’, ‘2.0’, 1.1’,
‘1.0’, or ‘1’ (default ‘1.1’). If set to ‘1.0’, the Host header will not be added to the scope.

• wsgierrors (io) – The stream to use as wsgierrors in the WSGI environ (default sys.
stderr)

• asgi_chunk_size (int) – The maximum number of bytes that will be sent to the ASGI
app in a single 'http.request' event (default 4096).

• asgi_disconnect_ttl (int) – The maximum number of seconds to wait since the
request was initiated, before emitting an 'http.disconnect' event when the app calls
the receive() function (default 300). Set to 0 to simulate an immediate disconnection without
first emitting 'http.request'.

• extras (dict) – Additional values to add to the WSGI environ dictionary or the ASGI
scope for the request (default: None)

• cookies (dict) – Cookies as a dict-like (Mapping) object, or an iterable yielding a series
of two-member (name, value) iterables. Each pair of items provides the name and value for
the ‘Set-Cookie’ header.

Returns The result of the request

Return type Result

5.4. Framework Reference 287

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#module-io
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

falcon.testing.simulate_put(app, path, **kwargs)→ falcon.testing.client._ResultBase
Simulate a PUT request to a WSGI or ASGI application.

Equivalent to:

simulate_request(app, 'PUT', path, **kwargs)

Note: In the case of an ASGI request, this method will simulate the entire app lifecycle in a single shot,
including lifespan and client disconnect events. In order to simulate multiple interleaved requests, or to test a
streaming endpoint (such as one that emits server-sent events), ASGIConductor can be used to more precisely
control the app lifecycle.

Parameters

• app (callable) – The application to call

• path (str) – The URL path to request

Keyword Arguments

• root_path (str) – The initial portion of the request URL’s “path” that corresponds to
the application object, so that the application knows its virtual “location”. This defaults to
the empty string, indicating that the application corresponds to the “root” of the server.

• protocol – The protocol to use for the URL scheme (default: ‘http’)

• port (int) – The TCP port to simulate. Defaults to the standard port used by the given
scheme (i.e., 80 for ‘http’ and 443 for ‘https’). A string may also be passed, as long as it can
be parsed as an int.

• params (dict) – A dictionary of query string parameters, where each key is a parameter
name, and each value is either a str or something that can be converted into a str, or a
list of such values. If a list, the value will be converted to a comma-delimited string of
values (e.g., ‘thing=1,2,3’).

• params_csv (bool) – Set to True to encode list values in query string params as
comma-separated values (e.g., ‘thing=1,2,3’). Otherwise, parameters will be encoded by
specifying multiple instances of the parameter (e.g., ‘thing=1&thing=2&thing=3’). Defaults
to False.

• query_string (str) – A raw query string to include in the request (default: None). If
specified, overrides params.

• content_type (str) – The value to use for the Content-Type header in the request. If
specified, this value will take precedence over any value set for the Content-Type header in
the headers keyword argument. The falcon module provides a number of constants for
common media types.

• headers (dict) – Extra headers as a dict-like (Mapping) object, or an iterable yielding
a series of two-member (name, value) iterables. Each pair of strings provides the name and
value for an HTTP header. If desired, multiple header values may be combined into a single
(name, value) pair by joining the values with a comma when the header in question supports
the list format (see also RFC 7230 and RFC 7231). Header names are not case-sensitive.

Note: If a User-Agent header is not provided, it will default to:

f'falcon-client/{falcon.__version__}'

288 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

• body (str) – The body of the request (default ‘’). The value will be encoded as UTF-8 in
the WSGI environ. Alternatively, a byte string may be passed, in which case it will be used
as-is.

• json (JSON serializable) – A JSON document to serialize as the body of the re-
quest (default: None). If specified, overrides body and sets the Content-Type header to
'application/json', overriding any value specified by either the content_type or
headers arguments.

• file_wrapper (callable) – Callable that returns an iterable, to be used as the value
for wsgi.file_wrapper in the WSGI environ (default: None). This can be used to test high-
performance file transmission when resp.stream is set to a file-like object.

• host (str) – A string to use for the hostname part of the fully qualified request URL
(default: ‘falconframework.org’)

• remote_addr (str) – A string to use as the remote IP address for the request (default:
‘127.0.0.1’). For WSGI, this corresponds to the ‘REMOTE_ADDR’ environ variable. For
ASGI, this corresponds to the IP address used for the ‘client’ field in the connection scope.

• http_version (str) – The HTTP version to simulate. Must be either ‘2’, ‘2.0’, 1.1’,
‘1.0’, or ‘1’ (default ‘1.1’). If set to ‘1.0’, the Host header will not be added to the scope.

• wsgierrors (io) – The stream to use as wsgierrors in the WSGI environ (default sys.
stderr)

• asgi_chunk_size (int) – The maximum number of bytes that will be sent to the ASGI
app in a single 'http.request' event (default 4096).

• asgi_disconnect_ttl (int) – The maximum number of seconds to wait since the
request was initiated, before emitting an 'http.disconnect' event when the app calls
the receive() function (default 300). Set to 0 to simulate an immediate disconnection without
first emitting 'http.request'.

• extras (dict) – Additional values to add to the WSGI environ dictionary or the ASGI
scope for the request (default: None)

• cookies (dict) – Cookies as a dict-like (Mapping) object, or an iterable yielding a series
of two-member (name, value) iterables. Each pair of items provides the name and value for
the ‘Set-Cookie’ header.

Returns The result of the request

Return type Result

falcon.testing.simulate_options(app, path, **kwargs)→ falcon.testing.client._ResultBase
Simulate an OPTIONS request to a WSGI or ASGI application.

Equivalent to:

simulate_request(app, 'OPTIONS', path, **kwargs)

Note: In the case of an ASGI request, this method will simulate the entire app lifecycle in a single shot,
including lifespan and client disconnect events. In order to simulate multiple interleaved requests, or to test a
streaming endpoint (such as one that emits server-sent events), ASGIConductor can be used to more precisely
control the app lifecycle.

5.4. Framework Reference 289

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#module-io
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

Parameters

• app (callable) – The application to call

• path (str) – The URL path to request

Keyword Arguments

• root_path (str) – The initial portion of the request URL’s “path” that corresponds to
the application object, so that the application knows its virtual “location”. This defaults to
the empty string, indicating that the application corresponds to the “root” of the server.

• protocol – The protocol to use for the URL scheme (default: ‘http’)

• port (int) – The TCP port to simulate. Defaults to the standard port used by the given
scheme (i.e., 80 for ‘http’ and 443 for ‘https’). A string may also be passed, as long as it can
be parsed as an int.

• params (dict) – A dictionary of query string parameters, where each key is a parameter
name, and each value is either a str or something that can be converted into a str, or a
list of such values. If a list, the value will be converted to a comma-delimited string of
values (e.g., ‘thing=1,2,3’).

• params_csv (bool) – Set to True to encode list values in query string params as
comma-separated values (e.g., ‘thing=1,2,3’). Otherwise, parameters will be encoded by
specifying multiple instances of the parameter (e.g., ‘thing=1&thing=2&thing=3’). Defaults
to False.

• query_string (str) – A raw query string to include in the request (default: None). If
specified, overrides params.

• headers (dict) – Extra headers as a dict-like (Mapping) object, or an iterable yielding
a series of two-member (name, value) iterables. Each pair of strings provides the name and
value for an HTTP header. If desired, multiple header values may be combined into a single
(name, value) pair by joining the values with a comma when the header in question supports
the list format (see also RFC 7230 and RFC 7231). Header names are not case-sensitive.

Note: If a User-Agent header is not provided, it will default to:

f'falcon-client/{falcon.__version__}'

• host (str) – A string to use for the hostname part of the fully qualified request URL
(default: ‘falconframework.org’)

• remote_addr (str) – A string to use as the remote IP address for the request (default:
‘127.0.0.1’). For WSGI, this corresponds to the ‘REMOTE_ADDR’ environ variable. For
ASGI, this corresponds to the IP address used for the ‘client’ field in the connection scope.

• http_version (str) – The HTTP version to simulate. Must be either ‘2’, ‘2.0’, 1.1’,
‘1.0’, or ‘1’ (default ‘1.1’). If set to ‘1.0’, the Host header will not be added to the scope.

• wsgierrors (io) – The stream to use as wsgierrors in the WSGI environ (default sys.
stderr)

• asgi_chunk_size (int) – The maximum number of bytes that will be sent to the ASGI
app in a single 'http.request' event (default 4096).

• asgi_disconnect_ttl (int) – The maximum number of seconds to wait since the
request was initiated, before emitting an 'http.disconnect' event when the app calls

290 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#module-io
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Falcon Documentation, Release 3.0.1

the receive() function (default 300). Set to 0 to simulate an immediate disconnection without
first emitting 'http.request'.

• extras (dict) – Additional values to add to the WSGI environ dictionary or the ASGI
scope for the request (default: None)

Returns The result of the request

Return type Result

falcon.testing.simulate_patch(app, path, **kwargs)→ falcon.testing.client._ResultBase
Simulate a PATCH request to a WSGI or ASGI application.

Equivalent to:

simulate_request(app, 'PATCH', path, **kwargs)

Note: In the case of an ASGI request, this method will simulate the entire app lifecycle in a single shot,
including lifespan and client disconnect events. In order to simulate multiple interleaved requests, or to test a
streaming endpoint (such as one that emits server-sent events), ASGIConductor can be used to more precisely
control the app lifecycle.

Parameters

• app (callable) – The application to call

• path (str) – The URL path to request

Keyword Arguments

• root_path (str) – The initial portion of the request URL’s “path” that corresponds to
the application object, so that the application knows its virtual “location”. This defaults to
the empty string, indicating that the application corresponds to the “root” of the server.

• protocol – The protocol to use for the URL scheme (default: ‘http’)

• port (int) – The TCP port to simulate. Defaults to the standard port used by the given
scheme (i.e., 80 for ‘http’ and 443 for ‘https’). A string may also be passed, as long as it can
be parsed as an int.

• params (dict) – A dictionary of query string parameters, where each key is a parameter
name, and each value is either a str or something that can be converted into a str, or a
list of such values. If a list, the value will be converted to a comma-delimited string of
values (e.g., ‘thing=1,2,3’).

• params_csv (bool) – Set to True to encode list values in query string params as
comma-separated values (e.g., ‘thing=1,2,3’). Otherwise, parameters will be encoded by
specifying multiple instances of the parameter (e.g., ‘thing=1&thing=2&thing=3’). Defaults
to False.

• query_string (str) – A raw query string to include in the request (default: None). If
specified, overrides params.

• content_type (str) – The value to use for the Content-Type header in the request. If
specified, this value will take precedence over any value set for the Content-Type header in
the headers keyword argument. The falcon module provides a number of constants for
common media types.

• headers (dict) – Extra headers as a dict-like (Mapping) object, or an iterable yielding
a series of two-member (name, value) iterables. Each pair of strings provides the name and

5.4. Framework Reference 291

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

value for an HTTP header. If desired, multiple header values may be combined into a single
(name, value) pair by joining the values with a comma when the header in question supports
the list format (see also RFC 7230 and RFC 7231). Header names are not case-sensitive.

Note: If a User-Agent header is not provided, it will default to:

f'falcon-client/{falcon.__version__}'

• body (str) – The body of the request (default ‘’). The value will be encoded as UTF-8 in
the WSGI environ. Alternatively, a byte string may be passed, in which case it will be used
as-is.

• json (JSON serializable) – A JSON document to serialize as the body of the re-
quest (default: None). If specified, overrides body and sets the Content-Type header to
'application/json', overriding any value specified by either the content_type or
headers arguments.

• host (str) – A string to use for the hostname part of the fully qualified request URL
(default: ‘falconframework.org’)

• remote_addr (str) – A string to use as the remote IP address for the request (default:
‘127.0.0.1’). For WSGI, this corresponds to the ‘REMOTE_ADDR’ environ variable. For
ASGI, this corresponds to the IP address used for the ‘client’ field in the connection scope.

• http_version (str) – The HTTP version to simulate. Must be either ‘2’, ‘2.0’, 1.1’,
‘1.0’, or ‘1’ (default ‘1.1’). If set to ‘1.0’, the Host header will not be added to the scope.

• wsgierrors (io) – The stream to use as wsgierrors in the WSGI environ (default sys.
stderr)

• asgi_chunk_size (int) – The maximum number of bytes that will be sent to the ASGI
app in a single 'http.request' event (default 4096).

• asgi_disconnect_ttl (int) – The maximum number of seconds to wait since the
request was initiated, before emitting an 'http.disconnect' event when the app calls
the receive() function (default 300). Set to 0 to simulate an immediate disconnection without
first emitting 'http.request'.

• extras (dict) – Additional values to add to the WSGI environ dictionary or the ASGI
scope for the request (default: None)

• cookies (dict) – Cookies as a dict-like (Mapping) object, or an iterable yielding a series
of two-member (name, value) iterables. Each pair of items provides the name and value for
the ‘Set-Cookie’ header.

Returns The result of the request

Return type Result

falcon.testing.simulate_delete(app, path, **kwargs)→ falcon.testing.client._ResultBase
Simulate a DELETE request to a WSGI or ASGI application.

Equivalent to:

simulate_request(app, 'DELETE', path, **kwargs)

Note: In the case of an ASGI request, this method will simulate the entire app lifecycle in a single shot,
including lifespan and client disconnect events. In order to simulate multiple interleaved requests, or to test a

292 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#module-io
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

streaming endpoint (such as one that emits server-sent events), ASGIConductor can be used to more precisely
control the app lifecycle.

Parameters

• app (callable) – The application to call

• path (str) – The URL path to request

Keyword Arguments

• root_path (str) – The initial portion of the request URL’s “path” that corresponds to
the application object, so that the application knows its virtual “location”. This defaults to
the empty string, indicating that the application corresponds to the “root” of the server.

• protocol – The protocol to use for the URL scheme (default: ‘http’)

• port (int) – The TCP port to simulate. Defaults to the standard port used by the given
scheme (i.e., 80 for ‘http’ and 443 for ‘https’). A string may also be passed, as long as it can
be parsed as an int.

• params (dict) – A dictionary of query string parameters, where each key is a parameter
name, and each value is either a str or something that can be converted into a str, or a
list of such values. If a list, the value will be converted to a comma-delimited string of
values (e.g., ‘thing=1,2,3’).

• params_csv (bool) – Set to True to encode list values in query string params as
comma-separated values (e.g., ‘thing=1,2,3’). Otherwise, parameters will be encoded by
specifying multiple instances of the parameter (e.g., ‘thing=1&thing=2&thing=3’). Defaults
to False.

• query_string (str) – A raw query string to include in the request (default: None). If
specified, overrides params.

• content_type (str) – The value to use for the Content-Type header in the request. If
specified, this value will take precedence over any value set for the Content-Type header in
the headers keyword argument. The falcon module provides a number of constants for
common media types.

• headers (dict) – Extra headers as a dict-like (Mapping) object, or an iterable yielding
a series of two-member (name, value) iterables. Each pair of strings provides the name and
value for an HTTP header. If desired, multiple header values may be combined into a single
(name, value) pair by joining the values with a comma when the header in question supports
the list format (see also RFC 7230 and RFC 7231). Header names are not case-sensitive.

Note: If a User-Agent header is not provided, it will default to:

f'falcon-client/{falcon.__version__}'

• body (str) – The body of the request (default ‘’). The value will be encoded as UTF-8 in
the WSGI environ. Alternatively, a byte string may be passed, in which case it will be used
as-is.

• json (JSON serializable) – A JSON document to serialize as the body of the re-
quest (default: None). If specified, overrides body and sets the Content-Type header to
'application/json', overriding any value specified by either the content_type or
headers arguments.

5.4. Framework Reference 293

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

• host (str) – A string to use for the hostname part of the fully qualified request URL
(default: ‘falconframework.org’)

• remote_addr (str) – A string to use as the remote IP address for the request (default:
‘127.0.0.1’). For WSGI, this corresponds to the ‘REMOTE_ADDR’ environ variable. For
ASGI, this corresponds to the IP address used for the ‘client’ field in the connection scope.

• http_version (str) – The HTTP version to simulate. Must be either ‘2’, ‘2.0’, 1.1’,
‘1.0’, or ‘1’ (default ‘1.1’). If set to ‘1.0’, the Host header will not be added to the scope.

• wsgierrors (io) – The stream to use as wsgierrors in the WSGI environ (default sys.
stderr)

• asgi_chunk_size (int) – The maximum number of bytes that will be sent to the ASGI
app in a single 'http.request' event (default 4096).

• asgi_disconnect_ttl (int) – The maximum number of seconds to wait since the
request was initiated, before emitting an 'http.disconnect' event when the app calls
the receive() function (default 300). Set to 0 to simulate an immediate disconnection without
first emitting 'http.request'.

• extras (dict) – Additional values to add to the WSGI environ dictionary or the ASGI
scope for the request (default: None)

• cookies (dict) – Cookies as a dict-like (Mapping) object, or an iterable yielding a series
of two-member (name, value) iterables. Each pair of items provides the name and value for
the ‘Set-Cookie’ header.

Returns The result of the request

Return type Result

falcon.testing.simulate_request(app, method='GET', path='/', query_string=None,
headers=None, content_type=None, body=None,
json=None, file_wrapper=None, wsgierrors=None,
params=None, params_csv=False, protocol='http',
host='falconframework.org', remote_addr=None,
extras=None, http_version='1.1', port=None,
root_path=None, cookies=None, asgi_chunk_size=4096,
asgi_disconnect_ttl=300)→ falcon.testing.client._ResultBase

Simulate a request to a WSGI or ASGI application.

Performs a request against a WSGI or ASGI application. In the case of WSGI, uses wsgiref.validate to
ensure the response is valid.

Note: In the case of an ASGI request, this method will simulate the entire app lifecycle in a single shot,
including lifespan and client disconnect events. In order to simulate multiple interleaved requests, or to test a
streaming endpoint (such as one that emits server-sent events), ASGIConductor can be used to more precisely
control the app lifecycle.

Keyword Arguments

• app (callable) – The WSGI or ASGI application to call

• method (str) – An HTTP method to use in the request (default: ‘GET’)

• path (str) – The URL path to request (default: ‘/’).

294 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#module-io
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/wsgiref.html#module-wsgiref.validate
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

Note: The path may contain a query string. However, neither query_string nor params may
be specified in this case.

• root_path (str) – The initial portion of the request URL’s “path” that corresponds to
the application object, so that the application knows its virtual “location”. This defaults to
the empty string, indicating that the application corresponds to the “root” of the server.

• protocol – The protocol to use for the URL scheme (default: ‘http’)

• port (int) – The TCP port to simulate. Defaults to the standard port used by the given
scheme (i.e., 80 for ‘http’ and 443 for ‘https’). A string may also be passed, as long as it can
be parsed as an int.

• params (dict) – A dictionary of query string parameters, where each key is a parameter
name, and each value is either a str or something that can be converted into a str, or a
list of such values. If a list, the value will be converted to a comma-delimited string of
values (e.g., ‘thing=1,2,3’).

• params_csv (bool) – Set to True to encode list values in query string params as
comma-separated values (e.g., ‘thing=1,2,3’). Otherwise, parameters will be encoded by
specifying multiple instances of the parameter (e.g., ‘thing=1&thing=2&thing=3’). Defaults
to False.

• query_string (str) – A raw query string to include in the request (default: None). If
specified, overrides params.

• content_type (str) – The value to use for the Content-Type header in the request. If
specified, this value will take precedence over any value set for the Content-Type header in
the headers keyword argument. The falcon module provides a number of constants for
common media types.

• headers (dict) – Extra headers as a dict-like (Mapping) object, or an iterable yielding
a series of two-member (name, value) iterables. Each pair of strings provides the name and
value for an HTTP header. If desired, multiple header values may be combined into a single
(name, value) pair by joining the values with a comma when the header in question supports
the list format (see also RFC 7230 and RFC 7231). Header names are not case-sensitive.

Note: If a User-Agent header is not provided, it will default to:

f'falcon-client/{falcon.__version__}'

• body (str) – The body of the request (default ‘’). The value will be encoded as UTF-8 in
the WSGI environ. Alternatively, a byte string may be passed, in which case it will be used
as-is.

• json (JSON serializable) – A JSON document to serialize as the body of the re-
quest (default: None). If specified, overrides body and sets the Content-Type header to
'application/json', overriding any value specified by either the content_type or
headers arguments.

• file_wrapper (callable) – Callable that returns an iterable, to be used as the value
for wsgi.file_wrapper in the WSGI environ (default: None). This can be used to test high-
performance file transmission when resp.stream is set to a file-like object.

• host (str) – A string to use for the hostname part of the fully qualified request URL
(default: ‘falconframework.org’)

5.4. Framework Reference 295

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

• remote_addr (str) – A string to use as the remote IP address for the request (default:
‘127.0.0.1’). For WSGI, this corresponds to the ‘REMOTE_ADDR’ environ variable. For
ASGI, this corresponds to the IP address used for the ‘client’ field in the connection scope.

• http_version (str) – The HTTP version to simulate. Must be either ‘2’, ‘2.0’, 1.1’,
‘1.0’, or ‘1’ (default ‘1.1’). If set to ‘1.0’, the Host header will not be added to the scope.

• wsgierrors (io) – The stream to use as wsgierrors in the WSGI environ (default sys.
stderr)

• asgi_chunk_size (int) – The maximum number of bytes that will be sent to the ASGI
app in a single 'http.request' event (default 4096).

• asgi_disconnect_ttl (int) – The maximum number of seconds to wait since the
request was initiated, before emitting an 'http.disconnect' event when the app calls
the receive() function (default 300).

• extras (dict) – Additional values to add to the WSGI environ dictionary or the ASGI
scope for the request (default: None)

• cookies (dict) – Cookies as a dict-like (Mapping) object, or an iterable yielding a series
of two-member (name, value) iterables. Each pair of items provides the name and value for
the ‘Set-Cookie’ header.

Returns The result of the request

Return type Result

falcon.testing.capture_responder_args(req, resp, resource, params)
Before hook for capturing responder arguments.

Adds the following attributes to the hooked responder’s resource class:

• captured_req

• captured_resp

• captured_kwargs

In addition, if the capture-req-body-bytes header is present in the request, the following attribute is added:

• captured_req_body

Including the capture-req-media header in the request (set to any value) will add the following attribute:

• capture-req-media

async falcon.testing.capture_responder_args_async(req, resp, resource, params)
Before hook for capturing responder arguments.

An asynchronous version of capture_responder_args().

falcon.testing.set_resp_defaults(req, resp, resource, params)
Before hook for setting default response properties.

This hook simply sets the the response body, status, and headers to the _default_status, _default_body, and
_default_headers attributes that are assumed to be defined on the resource object.

async falcon.testing.set_resp_defaults_async(req, resp, resource, params)
Wrap set_resp_defaults() in a coroutine.

296 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#module-io
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

Low-Level Utils

class falcon.testing.StartResponseMock
Mock object representing a WSGI start_response callable.

call_count
Number of times start_response was called.

Type int

status
HTTP status line, e.g. ‘785 TPS Cover Sheet not attached’.

Type str

headers
Raw headers list passed to start_response, per PEP-333.

Type list

headers_dict
Headers as a case-insensitive dict-like object, instead of a list.

Type dict

class falcon.testing.ASGIRequestEventEmitter(body: Optional[Union[str, bytes]] = None,
chunk_size: Optional[int] = None, dis-
connect_at: Optional[Union[int, float]] =
None)

Emits events on-demand to an ASGI app.

This class can be used to drive a standard ASGI app callable in order to perform functional tests on the app in
question.

Note: In order to ensure the app is able to handle subtle variations in the ASGI events that are allowed by the
specification, such variations are applied to the emitted events at unspecified intervals. This includes whether or
not the more_body field is explicitly set, or whether or not the request body chunk in the event is occasionally
empty,

Keyword Arguments

• body (str) – The body content to use when emitting http.request events. May be an empty
string. If a byte string, it will be used as-is; otherwise it will be encoded as UTF-8 (default
b'').

• chunk_size (int) – The maximum number of bytes to include in a single http.request
event (default 4096).

• disconnect_at (float) – The Unix timestamp after which to begin emitting 'http.
disconnect' events (default now + 30s). The value may be either an int or a float,
depending on the precision required. Setting disconnect_at to 0 is treated as a special case,
and will result in an 'http.disconnect' event being immediately emitted (rather than
first emitting an 'http.request' event).

disconnected
Returns True if the simulated client connection is in a “disconnected” state.

Type bool

5.4. Framework Reference 297

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

disconnect(exhaust_body: Optional[bool] = None)
Set the client connection state to disconnected.

Call this method to simulate an immediate client disconnect and begin emitting 'http.disconnect'
events.

Parameters exhaust_body (bool) – Set to False in order to begin emitting 'http.
disconnect' events without first emitting at least one 'http.request' event.

class falcon.testing.ASGILifespanEventEmitter(shutting_down)
Emits ASGI lifespan events to an ASGI app.

This class can be used to drive a standard ASGI app callable in order to perform functional tests on the app in
question.

When simulating both lifespan and per-request events, each event stream will require a separate invocation of the
ASGI callable; one with a lifespan event emitter, and one with a request event emitter. An asyncio Condition
can be used to pause the lifespan emitter until all of the desired request events have been emitted.

Keyword Arguments shutting_down (asyncio.Condition) – An instance of asyncio.
Condition that will be awaited before emitting the final shutdown event ('lifespan.
shutdown).

class falcon.testing.ASGIResponseEventCollector
Collects and validates ASGI events returned by an app.

events
An iterable of events that were emitted by the app, collected as-is from the app.

Type iterable

headers
An iterable of (str, str) tuples representing the ISO-8859-1 decoded headers emitted by the app in the body
of the 'http.response.start' event.

Type iterable

status
HTTP status code emitted by the app in the body of the 'http.response.start' event.

Type int

body_chunks
An iterable of bytes objects emitted by the app via 'http.response.body' events.

Type iterable

more_body
Whether or not the app expects to emit more body chunks. Will be None if unknown (i.e., the app has not
yet emitted any 'http.response.body' events.)

Type bool

Raises

• TypeError – An event field emitted by the app was of an unexpected type.

• ValueError – Invalid event name or field value.

298 Chapter 5. Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/asyncio-sync.html#asyncio.Condition
https://docs.python.org/3/library/asyncio-sync.html#asyncio.Condition
https://docs.python.org/3/library/asyncio-sync.html#asyncio.Condition
https://docs.python.org/3/library/asyncio-sync.html#asyncio.Condition
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Falcon Documentation, Release 3.0.1

falcon.testing.create_environ(path='/', query_string='', http_version='1.1', scheme='http',
host='falconframework.org', port=None, headers=None,
app=None, body='', method='GET', wsgierrors=None,
file_wrapper=None, remote_addr=None, root_path=None,
cookies=None)→ Dict[str, Any]

Create a mock PEP-3333 environ dict for simulating WSGI requests.

Keyword Arguments

• path (str) – The path for the request (default '/')

• query_string (str) – The query string to simulate, without a leading '?' (default
''). The query string is passed as-is (it will not be percent-encoded).

• http_version (str) – The HTTP version to simulate. Must be either '2', '2.0',
'1.1', '1.0', or '1' (default '1.1'). If set to '1.0', the Host header will not be
added to the scope.

• scheme (str) – URL scheme, either 'http' or 'https' (default 'http')

• host (str) – Hostname for the request (default 'falconframework.org')

• port (int) – The TCP port to simulate. Defaults to the standard port used by the given
scheme (i.e., 80 for 'http' and 443 for 'https'). A string may also be passed, as long
as it can be parsed as an int.

• headers (dict) – Headers as a dict-like (Mapping) object, or an iterable yielding a series
of two-member (name, value) iterables. Each pair of strings provides the name and value for
an HTTP header. If desired, multiple header values may be combined into a single (name,
value) pair by joining the values with a comma when the header in question supports the list
format (see also RFC 7230 and RFC 7231). Header names are not case-sensitive.

Note: If a User-Agent header is not provided, it will default to:

f'falcon-client/{falcon.__version__}'

• root_path (str) – Value for the SCRIPT_NAME environ variable, described in PEP-
333: ‘The initial portion of the request URL’s “path” that corresponds to the application
object, so that the application knows its virtual “location”. This may be an empty string, if
the application corresponds to the “root” of the server.’ (default '')

• app (str) – Deprecated alias for root_path. If both kwargs are passed, root_path takes
precedence.

• body (str) – The body of the request (default ''). The value will be encoded as UTF-8
in the WSGI environ. Alternatively, a byte string may be passed, in which case it will be
used as-is.

• method (str) – The HTTP method to use (default 'GET')

• wsgierrors (io) – The stream to use as wsgierrors (default sys.stderr)

• file_wrapper – Callable that returns an iterable, to be used as the value for
wsgi.file_wrapper in the environ.

• remote_addr (str) – Remote address for the request to use as the 'REMOTE_ADDR'
environ variable (default None)

5.4. Framework Reference 299

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#module-io
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

• cookies (dict) – Cookies as a dict-like (Mapping) object, or an iterable yielding a series
of two-member (name, value) iterables. Each pair of items provides the name and value for
the Set-Cookie header.

falcon.testing.create_scope(path='/', query_string='', method='GET', headers=None,
host='falconframework.org', scheme=None, port=None,
http_version='1.1', remote_addr=None, root_path=None, con-
tent_length=None, include_server=True, cookies=None) →
Dict[str, Any]

Create a mock ASGI scope dict for simulating HTTP requests.

Keyword Arguments

• path (str) – The path for the request (default '/')

• query_string (str) – The query string to simulate, without a leading '?' (default
''). The query string is passed as-is (it will not be percent-encoded).

• method (str) – The HTTP method to use (default 'GET')

• headers (dict) – Headers as a dict-like (Mapping) object, or an iterable yielding a series
of two-member (name, value) iterables. Each pair of strings provides the name and value for
an HTTP header. If desired, multiple header values may be combined into a single (name,
value) pair by joining the values with a comma when the header in question supports the
list format (see also RFC 7230 and RFC 7231). When the request will include a body, the
Content-Length header should be included in this list. Header names are not case-sensitive.

Note: If a User-Agent header is not provided, it will default to:

f'falcon-client/{falcon.__version__}'

• host (str) – Hostname for the request (default 'falconframework.org'). This also
determines the the value of the Host header in the request.

• scheme (str) – URL scheme, either 'http' or 'https' (default 'http')

• port (int) – The TCP port to simulate. Defaults to the standard port used by the given
scheme (i.e., 80 for 'http' and 443 for 'https'). A string may also be passed, as long
as it can be parsed as an int.

• http_version (str) – The HTTP version to simulate. Must be either '2', '2.0',
'1.1', '1.0', or '1' (default '1.1'). If set to '1.0', the Host header will not be
added to the scope.

• remote_addr (str) – Remote address for the request to use for the ‘client’ field in the
connection scope (default None)

• root_path (str) – The root path this application is mounted at; same as
SCRIPT_NAME in WSGI (default '').

• content_length (int) – The expected content length of the request body (default
None). If specified, this value will be used to set the Content-Length header in the request.

• include_server (bool) – Set to False to not set the ‘server’ key in the scope dict
(default True).

• cookies (dict) – Cookies as a dict-like (Mapping) object, or an iterable yielding a series
of two-member (name, value) iterables. Each pair of items provides the name and value for
the ‘Set-Cookie’ header.

300 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

falcon.testing.create_scope_ws(path='/', query_string='', headers=None,
host='falconframework.org', scheme=None, port=None,
http_version='1.1', remote_addr=None, root_path=None, in-
clude_server=True, subprotocols=None, spec_version='2.1')
→ Dict[str, Any]

Create a mock ASGI scope dict for simulating WebSocket requests.

Keyword Arguments

• path (str) – The path for the request (default '/')

• query_string (str) – The query string to simulate, without a leading '?' (default
''). The query string is passed as-is (it will not be percent-encoded).

• headers (dict) – Headers as a dict-like (Mapping) object, or an iterable yielding a series
of two-member (name, value) iterables. Each pair of strings provides the name and value for
an HTTP header. If desired, multiple header values may be combined into a single (name,
value) pair by joining the values with a comma when the header in question supports the
list format (see also RFC 7230 and RFC 7231). When the request will include a body, the
Content-Length header should be included in this list. Header names are not case-sensitive.

Note: If a User-Agent header is not provided, it will default to:

f'falcon-client/{falcon.__version__}'

• host (str) – Hostname for the request (default 'falconframework.org'). This also
determines the the value of the Host header in the request.

• scheme (str) – URL scheme, either 'ws' or 'wss' (default 'ws')

• port (int) – The TCP port to simulate. Defaults to the standard port used by the given
scheme (i.e., 80 for 'ws' and 443 for 'wss'). A string may also be passed, as long as it
can be parsed as an int.

• http_version (str) – The HTTP version to simulate. Must be either '2', '2.0', or
'1.1' (default '1.1').

• remote_addr (str) – Remote address for the request to use for the ‘client’ field in the
connection scope (default None)

• root_path (str) – The root path this application is mounted at; same as
SCRIPT_NAME in WSGI (default '').

• include_server (bool) – Set to False to not set the ‘server’ key in the scope dict
(default True).

• spec_version (str) – The ASGI spec version to emulate (default '2.1').

• subprotocols (Iterable[str]) – Subprotocols the client wishes to advertise to the
server (default []).

falcon.testing.create_req(options=None, **kwargs)→ falcon.request.Request
Create and return a new Request instance.

This function can be used to conveniently create a WSGI environ and use it to instantiate a falcon.Request
object in one go.

The arguments for this function are identical to those of falcon.testing.create_environ(), except
an additional options keyword argument may be set to an instance of falcon.RequestOptions to config-
ure certain aspects of request parsing in lieu of the defaults.

5.4. Framework Reference 301

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Falcon Documentation, Release 3.0.1

falcon.testing.create_asgi_req(body=None, req_type=None, options=None, **kwargs) → fal-
con.request.Request

Create and return a new ASGI Request instance.

This function can be used to conveniently create an ASGI scope and use it to instantiate a falcon.asgi.
Request object in one go.

The arguments for this function are identical to those of falcon.testing.create_scope(), with the
addition of body, req_type, and options arguments as documented below.

Keyword Arguments

• body (bytes) – The body data to use for the request (default b”). If the value is a str, it
will be UTF-8 encoded to a byte string.

• req_type (object) – A subclass of falcon.asgi.Request to instantiate. If not
specified, the standard falcon.asgi.Request class will simply be used.

• options (falcon.RequestOptions) – An instance of falcon.
RequestOptions that should be used to determine certain aspects of request parsing in
lieu of the defaults.

falcon.testing.closed_wsgi_iterable(iterable)
Wrap an iterable to ensure its close() method is called.

Wraps the given iterable in an iterator utilizing a for loop as illustrated in the PEP-3333 server/gateway side
example. Finally, if the iterable has a close() method, it is called upon exception or exhausting iteration.

Furthermore, the first bytestring yielded from iteration, if any, is prefetched before returning the wrapped iterator
in order to ensure the WSGI start_response function is called even if the WSGI application is a generator.

Parameters iterable (iterable) – An iterable that yields zero or more bytestrings, per PEP-
3333

Returns An iterator yielding the same bytestrings as iterable

Return type iterator

Other Helpers

Test Cases

class falcon.testing.TestCase(methodName='runTest')
Extends unittest to support WSGI/ASGI functional testing.

Note: If available, uses testtools in lieu of unittest.

This base class provides some extra plumbing for unittest-style test cases, to help simulate WSGI or ASGI
requests without having to spin up an actual web server. Various simulation methods are derived from falcon.
testing.TestClient.

Simply inherit from this class in your test case classes instead of unittest.TestCase or testtools.
TestCase.

app
A WSGI or ASGI application to target when simulating requests (defaults to falcon.App()). When
testing your application, you will need to set this to your own instance of falcon.App or falcon.
asgi.App. For example:

302 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://www.python.org/dev/peps/pep-3333/#the-server-gateway-side
https://www.python.org/dev/peps/pep-3333/#the-server-gateway-side
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#unittest.TestCase

Falcon Documentation, Release 3.0.1

from falcon import testing
import myapp

class MyTestCase(testing.TestCase):
def setUp(self):

super(MyTestCase, self).setUp()

Assume the hypothetical `myapp` package has a
function called `create()` to initialize and
return a `falcon.App` instance.
self.app = myapp.create()

class TestMyApp(MyTestCase):
def test_get_message(self):

doc = {'message': 'Hello world!'}

result = self.simulate_get('/messages/42')
self.assertEqual(result.json, doc)

Type object

setUp()
Hook method for setting up the test fixture before exercising it.

class falcon.testing.SimpleTestResource(status=None, body=None, json=None, head-
ers=None)

Mock resource for functional testing of framework components.

This class implements a simple test resource that can be extended as needed to test middleware, hooks, and the
Falcon framework itself.

Only noop on_get() and on_post() responders are implemented; when overriding these, or
adding additional responders in child classes, they can be decorated with the falcon.testing.
capture_responder_args() hook in order to capture the req, resp, and params arguments that are passed
to the responder. Responders may also be decorated with the falcon.testing.set_resp_defaults()
hook in order to set resp properties to default status, body, and header values.

Keyword Arguments

• status (str) – Default status string to use in responses

• body (str) – Default body string to use in responses

• json (JSON serializable) – Default JSON document to use in responses. Will be
serialized to a string and encoded as UTF-8. Either json or body may be specified, but not
both.

• headers (dict) – Default set of additional headers to include in responses

called
Whether or not a req/resp was captured.

Type bool

captured_req
The last Request object passed into any one of the responder methods.

Type falcon.Request

5.4. Framework Reference 303

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

Falcon Documentation, Release 3.0.1

captured_resp
The last Response object passed into any one of the responder methods.

Type falcon.Response

captured_kwargs
The last dictionary of kwargs, beyond req and resp, that were passed into any one of the responder
methods.

Type dict

Functions

falcon.testing.rand_string(min, max)→ str
Return a randomly-generated string, of a random length.

Parameters

• min (int) – Minimum string length to return, inclusive

• max (int) – Maximum string length to return, inclusive

falcon.testing.get_unused_port()→ int
Get an unused localhost port for use by a test server.

Warning: It is possible for a third party to bind to the returned port before the caller is able to do so. The
caller will need to retry with a different port in that case.

Warning: This method has only be tested on POSIX systems and may not work elsewhere.

falcon.testing.redirected(stdout=<_io.TextIOWrapper name='<stdout>' mode='w'
encoding='UTF-8'>, stderr=<_io.TextIOWrapper name='<stderr>'
mode='w' encoding='UTF-8'>)

Redirect stdout or stderr temporarily.

e.g.:

with redirected(stderr=os.devnull): . . .

falcon.testing.get_encoding_from_headers(headers)
Return encoding from given HTTP Header Dict.

Parameters headers (dict) – Dictionary from which to extract encoding. Header names must
either be lowercase or the dict must support case-insensitive lookups.

304 Chapter 5. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

5.5 Changelogs

5.5.1 Changelog for Falcon 3.0.1

Summary

This is a minor point release to take care of a couple of bugs that we did not catch for 3.0.0.

Fixed

• The api_helpers module was re-added, since it was renamed to app_helpers (and effectively removed)
without announcing a corresponding breaking change. This module is now considered deprecated, and will be
removed in a future Falcon version. (#1902)

• ASGI HTTP headers were treated as UTF-8 encoded, not taking the incompatibility with WSGI and porting
of WSGI applications into consideration. This was fixed, and ASGI headers are now decoded and encoded as
ISO-8859-1. (#1911)

Contributors to this Release

Many thanks to those who contributed to this bugfix release:

• CaselIT

• vytas7

5.5.2 Changelog for Falcon 3.0.0

Summary

We are pleased to present Falcon 3.0, a major new release that includes ASGI-based asyncio and WebSocket
support, fantastic multipart/form-data parsing, better error handling, enhancements to existing features, and the usual
assortment of bug fixes.

This is easily the biggest release—in terms of both hours volunteered and code contributed—that we have ever done.
We sincerely thank our stupendous group of 38 contributors who submitted pull requests for this release, as well as all
those who have generously provided financial support to the project.

When we began working on this release, we knew we wanted to not only evolve the framework’s existing features, but
also to deliver first-class, user-friendly asyncio support alongside our existing WSGI feature set.

On the other hand, we have always fought the temptation to expand Falcon’s scope, in order to leave room for com-
munity projects and standards to innovate around common, self-contained capabilities. And so when ASGI arrived on
the scene, we saw it as the perfect opportunity to deliver long-requested asyncio and WebSocket features while
still encouraging sharing and reuse within the Python web community.

It can be painful to migrate a large code base to a major new version of a framework. Therefore, in 3.0 we went to
great lengths to minimize breaking changes, although a number of methods and attributes were deprecated. That being
said, everyone will likely run up against at least one or two items in the breaking changes list below. Please carefully
review the list of changes and thoroughly test your apps with Falcon 3.0 before deploying to production.

Leading up to this release, members of the core maintainers team spent many hours (and not a few late nights and
weekends) prototyping, tuning, and testing in order to uphold the high standards of correctness and reliability for

5.5. Changelogs 305

https://github.com/falconry/falcon/issues/1902
https://github.com/falconry/falcon/issues/1911
https://github.com/CaselIT
https://github.com/vytas7
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://asgi.readthedocs.io/en/latest/
https://docs.python.org/3/library/asyncio.html#module-asyncio

Falcon Documentation, Release 3.0.1

which Falcon is known. That being said, no code is perfect, so please don’t hesitate to reach out on falconry/user or
GitHub if you run into any issues.

Again, thanks so much to everyone who supported this release! Over the years we like to think that our little framework
has had a positive impact on the Python community, and has even helped nudge the state of the art forward. And it is
all thanks to our amazing supporters and contributors.

Changes to Supported Platforms

• Python 3.8 and 3.9 are now fully supported.

• Python 3.6+ is only required when using the new ASGI interface. WSGI is still supported on Python 3.5+.

• Python 3.5 support is deprecated and may be removed in the next major release.

• Python 3.4 is no longer supported.

• The Falcon 2.x series was the last to support Python language version 2. As a result, support for CPython 2.7
and PyPy2.7 was removed in Falcon 3.0.

Breaking Changes

• The class OptionalRepresentation and the attribute has_representation were deprecated. The
default error serializer now generates a representation for every error type that derives from falcon.
HTTPError. In addition, Falcon now ensures that any previously set response body is cleared before handling
any raised exception. (#452)

• The class NoRepresentation was deprecated. All subclasses of falcon.HTTPError now have a media
type representation. (#777)

• In order to reconcile differences between the framework’s support for WSGI vs. ASGI, the following breaking
changes were made:

– falcon.testing.create_environ() previously set a default User-Agent header, when one was
not provided, to the value 'curl/7.24.0 (x86_64-apple-darwin12.0)'. As of Falcon 3.0,
the default User-Agent string is now f'falcon-client/{falcon.__version__}'. This value
can be overridden for the sake of backwards-compatibility by setting falcon.testing.helpers.
DEFAULT_UA.

– The falcon.testing.create_environ() function’s protocol keyword argument was renamed to
http_version and now only includes the version number (the value is no longer prefixed with 'HTTP/').

– The falcon.testing.create_environ() function’s app keyword argument was renamed to
root_path.

– The writeable property of falcon.stream.BoundedStream was renamed to writable per the stan-
dard file-like I/O interface (the old name was a misspelling)

– If an error handler raises an exception type other than falcon.HTTPStatus or falcon.
HTTPError, remaining middleware process_response methods will no longer be executed before bub-
bling up the unhandled exception to the web server.

– falcon.get_http_status() no longer accepts floats, and the method itself is deprecated.

– falcon.app_helpers.prepare_middleware() no longer accepts a single object; the value that
is passed must be an iterable.

– falcon.Request.access_route now includes the value of the remote_addr property as the
last element in the route, if not already present in one of the headers that are checked.

306 Chapter 5. Documentation

https://gitter.im/falconry/user
https://github.com/falconry/falcon/issues
https://github.com/falconry/falcon/issues/452
https://github.com/falconry/falcon/issues/777

Falcon Documentation, Release 3.0.1

– When the 'REMOTE_ADDR' field is not present in the WSGI environ, Falcon will assume '127.0.0.
1' for the value, rather than simply returning None for falcon.Request.remote_addr.

The changes above were implemented as part of the ASGI+HTTP work stream. (#1358)

• Header-related methods of the Response class no longer coerce the passed header name to a string via str().
(#1497)

• An unhandled exception will no longer be raised to the web server. Rather, the framework now installs a default
error handler for the Exception type. This also means that middleware process_response methods will still
be called in this case, rather than being skipped as previously. The new default error handler simply generates
an HTTP 500 response. This behavior can be overridden by specifying your own error handler for Exception
via add_error_handler(). (#1507)

• Exceptions are now handled by the registered handler for the most specific matching exception class, rather
than in reverse order of registration. “Specificity” is determined by the method resolution order of the raised
exception type. (See add_error_handler() for more details.) (#1514)

• The deprecated stream_len property was removed from the Response class. Please use set_stream()
or content_length instead. (#1517)

• If RequestOptions.strip_url_path_trailing_slash is enabled, routes should now be added
without a trailing slash. Previously, the trailing slash was always removed as a side effect of a bug regardless of
the strip_url_path_trailing_slash option value. See also: How does Falcon handle a trailing slash
in the request path? (#1544)

• Rename falcon.Response.body and falcon.HTTPStatus.body to text. The old name is depre-
cated, but still available. (#1578)

• Referencing the class falcon.stream.BoundedStream through the falcon.request_helpers
module is deprecated. It is now accessible from the module falcon.stream. (#1583)

• General refactoring of internal media handler:

– Deserializing an empty body with a handler that does not support it will raise falcon.
MediaNotFoundError, and will be rendered as a 400 Bad Request response. This error may
be suppressed by passing a default value to get_media to be used in case of empty body. See also
falcon.Request.get_media() for details. Previously None was returned in all cases without
calling the handler.

– Exceptions raised by the handlers are wrapped as falcon.MediaMalformedError, and will be ren-
dered as a 400 Bad Request response.

– Subsequent calls to falcon.Request.get_media() or falcon.Request.media will re-
raise the same exception, if the first call ended in an error, unless the exception was a falcon.
MediaNotFoundError and a default value is passed to the default_when_empty attribute of the
current invocation. Previously None was returned.

External handlers should update their logic to align to the internal Falcon handlers. (#1589)

• The falcon.Response.data property now just simply returns the same data object that it was set to, if
any, rather than also checking and serializing the value of the falcon.Response.media property. Instead,
a new render_body() method has been implemented, which can be used to obtain the HTTP response body
for the request, taking into account the text, data, and media attributes. (#1679)

• The params_csv parameter now defaults to False in falcon.testing.simulate_request(). The
change was made to match the default value of the request option auto_parse_qs_csv (False since
Falcon 2.0). (#1730)

• The falcon.HTTPError.to_json() now returns bytes instead of str. Importing json from
falcon.util is deprecated. (#1767)

5.5. Changelogs 307

https://github.com/falconry/falcon/issues/1358
https://github.com/falconry/falcon/issues/1497
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://github.com/falconry/falcon/issues/1507
https://github.com/falconry/falcon/issues/1514
https://github.com/falconry/falcon/issues/1517
https://github.com/falconry/falcon/issues/1544
https://github.com/falconry/falcon/issues/1578
https://github.com/falconry/falcon/issues/1583
https://github.com/falconry/falcon/issues/1589
https://github.com/falconry/falcon/issues/1679
https://github.com/falconry/falcon/issues/1730
https://github.com/falconry/falcon/issues/1767

Falcon Documentation, Release 3.0.1

• The private attributes for JSONHandler were renamed, and the private attributes used by
MessagePackHandler were replaced. Subclasses that refer to these variables will need to be up-
dated. In addition, the undocumented falcon.media.Handlers.find_by_media_type() method
was deprecated and may be removed in a future release. (#1822)

New & Improved

• ASGI+WebSocket support was added to the framework via falcon.asgi.App and falcon.asgi.
WebSocket. (#321)

• The error classes in falcon.errors were updated to have the title and description keyword argu-
ments and to correctly handle headers passed as list of tuples (#777)

• MultipartFormHandler was added to enable support for multipart forms (of content type multipart/
form-data) through falcon.Request.get_media(). (#953)

• The falcon.Response.status attribute can now be also set to an http.HTTPStatus instance, an in-
teger status code, as well as anything supported by the falcon.code_to_http_status() utility method.
(#1135)

• A new kwarg, cors_enable, was added to the falcon.App initializer. cors_enable can be used to
enable a simple blanket CORS policy for all responses. (See also: CORS.) (#1194)

• ASGI+HTTP support was added to the framework via a new class, falcon.asgi.App. The testing
module was also updated to fully support ASGI apps, including two new helper functions: falcon.
testing.create_scope() and falcon.testing.create_asgi_req(). WSGI users also get a
new falcon.testing.create_req() method. As part of the ASGI work, several additional utility func-
tions were added, including falcon.is_python_func(), falcon.http_status_to_code() and
falcon.code_to_http_status(); as well as sync/async helpers falcon.get_running_loop(),
falcon.create_task(), falcon.sync_to_async(), falcon.wrap_sync_to_async(), and
falcon.wrap_sync_to_async_unsafe(). (#1358)

• The falcon.App class initializer now supports a new argument sink_before_static_route (default
True, maintaining 2.0 behavior) to specify if sinks should be handled before or after static routes.
(#1372)

• The falcon.Response.append_link() method now supports setting the crossorigin link CORS set-
tings attribute. (#1410)

• Falcon now supports all WebDAV methods (RFC 2518 and RFC 4918), such as COPY, LOCK, MKCOL,
MOVE, PROPFIND, PROPPATCH and UNLOCK. (#1426)

• Added inspect module to collect information about an application regarding the registered routes, middleware,
static routes, sinks and error handlers (See also: Inspect Module.) (#1435)

• WSGI path decoding in falcon.Request was optimized, and is now significantly faster than in Falcon 2.0.
(#1492)

• The set_headers() method now accepts an instance of any dict-like object that implements an items()
method. (#1546)

• Change falcon.routing.CompiledRouter to compile the routes only when the first request is
routed. This can be changed by passing compile=True to falcon.routing.CompiledRouter.
add_route(). (#1550)

• The set_cookie() method now supports setting the SameSite cookie attribute. (#1556)

• The falcon.API class was renamed to falcon.App. The old API class remains available as an alias for
backwards-compatibility, but it is now considered deprecated and will be removed in a future release. (#1579)

308 Chapter 5. Documentation

https://github.com/falconry/falcon/issues/1822
https://github.com/falconry/falcon/issues/321
https://github.com/falconry/falcon/issues/777
https://github.com/falconry/falcon/issues/953
https://github.com/falconry/falcon/issues/1135
https://github.com/falconry/falcon/issues/1194
https://github.com/falconry/falcon/issues/1358
https://github.com/falconry/falcon/issues/1372
https://github.com/falconry/falcon/issues/1410
https://github.com/falconry/falcon/issues/1426
https://github.com/falconry/falcon/issues/1435
https://github.com/falconry/falcon/issues/1492
https://github.com/falconry/falcon/issues/1546
https://github.com/falconry/falcon/issues/1550
https://github.com/falconry/falcon/issues/1556
https://github.com/falconry/falcon/issues/1579

Falcon Documentation, Release 3.0.1

• URLEncodedFormHandler was added to enable support for URL-encoded forms (of content
type application/x-www-form-urlencoded) through falcon.Request.get_media(). The
auto_parse_form_urlencoded option is now deprecated in favor of URLEncodedFormHandler.
(See also: How can I access POSTed form params?). (#1580)

• get_param_as_bool() now supports the use of 't' and 'y' values for True, as well as 'f' and 'n'
for False. (#1606)

• falcon.testing.simulate_request() now accepts a content_type keyword argument. This provides
a more convenient way to set this common header vs. the headers argument. (#1646)

• When no route matches a request, the framework will now raise a specialized subclass of HTTPNotFound
(HTTPRouteNotFound) so that a custom error handler can distinguish that specific case if desired. (#1647)

• Default media handlers were simplified by removing a separate handler for the now-obsolete
application/json; charset=UTF-8. As a result, providing a custom JSON media handler will now
unambiguously cover both application/json and the former Content-type. (#1717)

Fixed

• Previously, the default CompiledRouter was erroneously stripping trailing slashes from URI templates. This
has been fixed so that it is now possible to add two different routes for a path with and without a trailing forward
slash (see also: RequestOptions.strip_url_path_trailing_slash). (#1544)

• falcon.uri.decode() and falcon.uri.parse_query_string() no longer explode quadrati-
cally for a large number of percent-encoded characters. The time complexity of these utility functions is now
always close to O(n). (#1594)

• When auto_parse_qs_csv is enabled, the framework now correctly parses all occurrences of the same pa-
rameter in the query string, rather than only splitting the values in the first occurrence. For example, whereas pre-
viously t=1,2&t=3,4 would become ['1', '2', '3,4'], now the resulting list will be ['1', '2',
'3', '4'] (#1597)

• The parse_query_string() utility function is now correctly parsing an empty string as {}. (#1600)

• Previously, response serialization errors (such as in the case of a faulty custom media handler, or because
an instance of HTTPUnsupportedMediaType was raised for an unsupported response content type) were
unexpectedly bubbled up to the application server. This has been fixed, and these errors are now handled exactly
the same way as other exceptions raised in a responder (see also: Error Handling). (#1607)

• falcon.Request.forwarded_host now contains the port when proxy headers are not set, to make it
possible to correctly reconstruct the URL when the application is not behind a proxy. (#1678)

• The Response.downloadable_as property is now correctly encoding non-ASCII filenames as per RFC
6266 recommendations. (#1749)

• The falcon.routing.CompiledRouter no longer mistakenly sets route parameters while exploring non
matching routes. (#1779)

• The to_query_str() method now correctly encodes parameter keys and values. As a result, the params
parameter in simulate_request() will now correctly pass values containing special characters (such as
'&') to the application. (#1871)

• falcon.uri.encode and falcon.uri.encode_value now escape all percent characters by default
even if it appears they have already been escaped. The falcon.uri.encode_check_escaped and
falcon.uri.encode_value_check_escaped methods have been added to give the option of retain-
ing the previous behavior where needed. These new methods have been applied to the falcon.Response.
location, falcon.Response.content_location, falcon.Response.append_link() attrs
and methods to retain previous behavior. (#1872)

5.5. Changelogs 309

https://github.com/falconry/falcon/issues/1580
https://github.com/falconry/falcon/issues/1606
https://github.com/falconry/falcon/issues/1646
https://github.com/falconry/falcon/issues/1647
https://github.com/falconry/falcon/issues/1717
https://github.com/falconry/falcon/issues/1544
https://github.com/falconry/falcon/issues/1594
https://github.com/falconry/falcon/issues/1597
https://github.com/falconry/falcon/issues/1600
https://github.com/falconry/falcon/issues/1607
https://github.com/falconry/falcon/issues/1678
https://tools.ietf.org/html/rfc6266#appendix-D
https://tools.ietf.org/html/rfc6266#appendix-D
https://github.com/falconry/falcon/issues/1749
https://github.com/falconry/falcon/issues/1779
https://github.com/falconry/falcon/issues/1871
https://github.com/falconry/falcon/issues/1872

Falcon Documentation, Release 3.0.1

• Previously, methods marked with the deprecated() utility wrapper could raise an unexpected
AttributeError when running under certain applications servers such as Meinheld. This has been fixed
so that deprecated() no longer relies on the availability of interpreter-specific stack frame instrospection
capabilites. (#1882)

Misc

• Deprecate the use of positional arguments for the optional kw args of the falcon.HTTPError subclasses
(#777)

• Setup towncrier to make CHANGES reporting much easier. (#1461)

• Fix test errors on Windows (#1656)

• A new method, get_media(), was added that can now be used instead of the falcon.Request.media
property to make it more clear to app maintainers that getting the media object for a request involves a side-effect
of consuming and deserializing the body stream. The original property remains available to ensure backwards-
compatibility with existing apps. (#1679)

• Falcon now uses the falcon.Response media handlers when serializing to JSON falcon.HTTPError
and falcon.asgi.SSEvent. falcon.Request will use its defined media handler when loading a param
as JSON with falcon.Request.get_param_as_json(). (#1767)

• The add_link() method of the falcon.Request class was renamed to falcon.Response.
append_link(). The old name is still available as a deprecated alias. (#1801)

Contributors to this Release

Many thanks to all of our talented and stylish contributors for this release!

• adsahay

• AR4Z

• ashutoshvarma

• bibekjoshi54

• BigBlueHat

• brunneis

• CaselIT

• Ciemaar

• Coykto

• cozyDoomer

• cravindra

• csojinb

• danilito19

• edmondb

• flokX

• grktsh

• hackedd

310 Chapter 5. Documentation

https://github.com/falconry/falcon/issues/1882
https://github.com/falconry/falcon/issues/777
https://github.com/falconry/falcon/issues/1461
https://github.com/falconry/falcon/issues/1656
https://github.com/falconry/falcon/issues/1679
https://github.com/falconry/falcon/issues/1767
https://github.com/falconry/falcon/issues/1801
https://github.com/adsahay
https://github.com/AR4Z
https://github.com/ashutoshvarma
https://github.com/bibekjoshi54
https://github.com/BigBlueHat
https://github.com/brunneis
https://github.com/CaselIT
https://github.com/Ciemaar
https://github.com/Coykto
https://github.com/cozyDoomer
https://github.com/cravindra
https://github.com/csojinb
https://github.com/danilito19
https://github.com/edmondb
https://github.com/flokX
https://github.com/grktsh
https://github.com/hackedd

Falcon Documentation, Release 3.0.1

• jmvrbanac

• karlhigley

• kemingy

• kgriffs

• mattdonders

• MinesJA

• minrock

• mivade

• mosi-kha

• myusko

• nagaabhinaya

• nZac

• pbjr23

• rmyers

• safaozturk93

• screamingskulls

• seanharrison

• timgates42

• vytas7

• waghanza

• withshubh

5.5.3 Changelog for Falcon 2.0.0

Summary

Many thanks to all of our awesome contributors (listed down below) who made this release possible!

In 2.0 we added a number of new convenience methods and properties. We also made it a lot cleaner and less error-
prone to assign multiple routes to the same resource class via suffixed responders.

Also noteworthy is the significant effort we invested in improving the accuracy, clarity, and breadth of the docs. We
hope these changes will help make the framework easier to learn for newcomers.

Middleware methods can now short-circuit request processing, and we improved cookie and ETag handling. Plus, the
testing framework received several improvements to make it easier to simulate certain types of requests.

As this is the first major release that we have had in quite a while, we have taken the opportunity to clean up many
parts of the framework. Deprecated variables, methods, and classes have been removed, along with all backwards-
compatibility shims for old method signatures. We also changed the defaults for a number of request options based on
community feedback.

Please carefully review the list of breaking changes below to see what you may need to tweak in your app to make it
compatible with this release.

5.5. Changelogs 311

https://github.com/jmvrbanac
https://github.com/karlhigley
https://github.com/kemingy
https://github.com/kgriffs
https://github.com/mattdonders
https://github.com/MinesJA
https://github.com/minrock
https://github.com/mivade
https://github.com/mosi-kha
https://github.com/myusko
https://github.com/nagaabhinaya
https://github.com/nZac
https://github.com/pbjr23
https://github.com/rmyers
https://github.com/safaozturk93
https://github.com/screamingskulls
https://github.com/seanharrison
https://github.com/timgates42
https://github.com/vytas7
https://github.com/waghanza
https://github.com/withshubh

Falcon Documentation, Release 3.0.1

Changes to Supported Platforms

• CPython 3.7 is now fully supported.

• Falcon 2.x series is the last to support Python language version 2. As a result, support for CPython 2.7 and
PyPy2.7 will be removed in Falcon 3.0.

• Support for CPython 3.4 is now deprecated and will be removed in Falcon 3.0.

• Support for CPython 2.6, CPython 3.3 and Jython 2.7 has been dropped.

Breaking Changes

• Previously, several methods in the Response class could be used to attempt to set raw cookie headers. How-
ever, due to the Set-Cookie header values not being combinable as a comma-delimited list, this resulted in
an incorrect response being constructed for the user agent in the case that more than one cookie was being
set. Therefore, the following methods of falcon.Response now raise an instance of ValueError if
an attempt is made to use them for Set-Cookie: set_header(), delete_header(), get_header(),
set_headers().

• falcon.testing.Result.json now returns None when the response body is empty, rather than raising
an error.

• get_param_as_bool() now defaults to treating valueless parameters as truthy, rather than falsy. None is
still returned by default when the parameter is altogether missing.

• get_param_as_bool() no longer raises an error for a valueless parameter when the blank_as_true
keyword argument is False. Instead, False is simply returned in that case.

• keep_blank_qs_values now defaults to True instead of False.

• auto_parse_qs_csv now defaults to False instead of True.

• independent_middleware kwarg on falcon.API now defaults to True instead of False.

• The stream_len property of the Response class was changed to be an alias of the new content_length
property. Please use set_stream() or content_length instead, going forward, as stream_len is now
deprecated.

• Request context_type was changed from dict to a bare class implementing the mapping interface. (See
also: How do I adapt my code to default context type changes in Falcon 2.0?)

• Response context_type was changed from dict to a bare class implementing the mapping interface. (See
also: How do I adapt my code to default context type changes in Falcon 2.0?)

• JSONHandler and HTTPError no longer use ujson in lieu of the standard json library (when ujson is
available in the environment). Instead, JSONHandler can now be configured to use arbitrary dumps()
and loads() functions. If you also need to customize HTTPError serialization, you can do so via
set_error_serializer().

• The find() method for a custom router is now required to accept the req keyword argument that was added
in a previous release. The backwards-compatible shim was removed.

• All middleware methods and hooks must now accept the arguments as specified in the relevant interface defini-
tions as of Falcon 2.0. All backwards-compatible shims have been removed.

• Custom error serializers are now required to accept the arguments as specified by
set_error_serializer() for the past few releases. The backwards-compatible shim has been
removed.

• An internal function, make_router_search(), was removed from the api_helpers module.

312 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

• An internal function, wrap_old_error_serializer(), was removed from the api_helpers module.

• In order to improve performance, the falcon.Request.headers and falcon.Request.cookies
properties now return a direct reference to an internal cached object, rather than making a copy each time. This
should normally not cause any problems with existing apps since these objects are generally treated as read-only
by the caller.

• The falcon.Request.stream attribute is no longer wrapped in a bounded stream when Falcon detects that
it is running on the wsgiref server. If you need to normalize stream semantics between wsgiref and a production
WSGI server, bounded_stream may be used instead.

• falcon.Request.cookies now gives precedence to the first value encountered in the Cookie header for
a given cookie name, rather than the last.

• The ordering of the parameters passed to custom error handlers was adjusted to be more intuitive and consistent
with the rest of the framework:

Before
def handle_error(ex, req, resp, params):
pass

Falcon 2.0
def handle_error(req, resp, ex, params):
pass

See also: add_error_handler()

• strip_url_path_trailing_slash now defaults to False instead of True.

• The deprecated falcon.testing.TestCase.api property was removed.

• The deprecated falcon.testing.TestCase.api_class class variable was removed.

• The deprecated falcon.testing.TestBase class was removed.

• The deprecated falcon.testing.TestResource class was removed.

• The deprecated protocol property was removed from the Request class.

• The deprecated get_param_as_dict() method alias was removed from the Request class. Please use
get_param_as_json() instead.

• Routers were previously allowed to accept additional args and keyword arguments, and were not required to use
the variadic form. Now, they are only allowed to accept additional options as variadic keyword arguments, and
to ignore any arguments they don’t support. This helps overridden router logic be less fragile in terms of their
interface contracts, which also makes it easier to keep Falcon backwards-compatible in the face of any future
changes in this area.

• add_route() previously accepted *args, but now no longer does.

• The add_route() method for custom routers no longer takes a method_map argument. Custom routers
should, instead, call the map_http_methods() function directly from their add_route() method if they
require this mapping.

• The serialize() media handler method now receives an extra content_type argument, while the
deserialize() method now takes stream, content_type, and content_length arguments, rather than a single
raw argument. The raw data can still be obtained by executing raw = stream.read().

See also: BaseHandler

• The deprecated falcon.routing.create_http_method_map() method was removed.

• The keyword arguments for parse_query_string() were renamed to be more concise:

5.5. Changelogs 313

Falcon Documentation, Release 3.0.1

Before
parsed_values = parse_query_string(

query_string, keep_blank_qs_values=True, parse_qs_csv=False
)

Falcon 2.0
parsed_values = parse_query_string(

query_string, keep_blank=True, csv=False
)

• auto_parse_qs_csv now defaults to False instead of True.

• The HTTPRequestEntityTooLarge class was renamed to HTTPPayloadTooLarge.

• Two of the keyword arguments for get_param_as_int()were renamed to avoid shadowing built-in Python
names:

Before
dpr = req.get_param_as_int('dpr', min=0, max=3)

Falcon 2.0
dpr = req.get_param_as_int('dpr', min_value=0, max_value=3)

• The falcon.media.validators.jsonschema.validate() decorator now uses functools.
wraps() to make the decorated method look like the original.

• Previously, HTTPError instances for which the has_representation property evaluated to False were not
passed to custom error serializers (such as in the case of types that subclass NoRepresentation). This has
now been fixed so that custom error serializers will be called for all instances of HTTPError.

• Request cookie parsing no longer uses the standard library for most of the parsing logic. This may lead to subtly
different results for archaic cookie header formats, since the new implementation is based on RFC 6265.

• The if_match and if_none_match properties now return a list of falcon.ETag objects rather than the
raw value of the If-Match or If-None-Match headers, respectively.

• When setting the etag header property, the value will now be wrapped with double-quotes (if not already
present) to ensure compliance with RFC 7232.

• The default error serializer no longer sets the charset parameter for the media type returned in the Content-
Type header, since UTF-8 is the default encoding for both JSON and XML media types. This should not break
well-behaved clients, but could impact test cases in apps that assert on the exact value of the Content-Type
header.

• Similar to the change made to the default error serializer, the default JSON media type generally used for
successful responses was also modified to no longer specify the charset parameter. This change affects
both the falcon.DEFAULT_MEDIA_TYPE and falcon.MEDIA_JSON constants, as well as the default
value of the media_type keyword argument specified for the falcon.API initializer. This change also
affects the default value of the RequestOptions.default_media_type and ResponseOptions.
default_media_type options.

314 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

New & Improved

• Several performance optimizations were made to hot code paths in the framework to make Falcon 2.0 even faster
than 1.4 in some cases.

• Numerous changes were made to the docs to improve clarity and to provide better recommendations on how to
best use various parts of the framework.

• Added a new headers property to the Response class.

• Removed the six and python-mimeparse dependencies.

• Added a new complete property to the Response class. This can be used to short-circuit request processing
when the response has been pre-constructed.

• Request context_type now defaults to a bare class allowing to set attributes on the request context object:

Before
req.context['role'] = 'trial'
req.context['user'] = 'guest'

Falcon 2.0
req.context.role = 'trial'
req.context.user = 'guest'

To ease the migration path, the previous behavior is supported by implementing the mapping interface in a way
that object attributes and mapping items are linked, and setting one sets the other as well. However, as of Falcon
2.0, the dict context interface is considered deprecated, and may be removed in a future release.

Applications can work around this change by explicitly overriding context_type to dict. (See also: How do
I adapt my code to default context type changes in Falcon 2.0?)

• Response context_type now defaults to a bare class allowing to set attributes on the response context object:

Before
resp.context['cache_strategy'] = 'lru'

Falcon 2.0
resp.context.cache_strategy = 'lru'

To ease the migration path, the previous behavior is supported by implementing the mapping interface in a way
that object attributes and mapping items are linked, and setting one sets the other as well. However, as of Falcon
2.0, the dict context interface is considered deprecated, and may be removed in a future release.

Applications can work around this change by explicitly overriding context_type to dict. (See also: How do
I adapt my code to default context type changes in Falcon 2.0?)

• JSONHandler can now be configured to use arbitrary dumps() and loads() functions. This enables
support not only for using any of a number of third-party JSON libraries, but also for customizing the keyword
arguments used when (de)serializing objects.

• Added a new method, get_cookie_values(), to the Request class. The new method supports getting
all values provided for a given cookie, and is now the preferred mechanism for reading request cookies.

• Optimized request cookie parsing. It is now roughly an order of magnitude faster.

• append_header() now supports appending raw Set-Cookie header values.

• Multiple routes can now be added for the same resource instance using a suffix to distinguish the set of respon-
ders that should be used. In this way, multiple closely-related routes can be mapped to the same resource while
preserving readability and consistency.

5.5. Changelogs 315

Falcon Documentation, Release 3.0.1

See also: add_route()

• The falcon.media.validators.jsonschema.validate() decorator now supports both request
and response validation.

• A static route can now be configured to return the data from a default file when the requested file path is not
found.

See also: add_static_route()

• The ordering of the parameters passed to custom error handlers was adjusted to be more intuitive and consistent
with the rest of the framework:

Before
def handle_error(ex, req, resp, params):
pass

Falcon 2.0
def handle_error(req, resp, ex, params):
pass

See also: add_error_handler().

• All error classes now accept a headers keyword argument for customizing response headers.

• A new method, get_param_as_float(), was added to the Request class.

• A new method, has_param(), was added to the Request class.

• A new property, content_length, was added to the Response class. Either set_stream() or
content_length should be used going forward, as stream_len is now deprecated.

• All get_param_*() methods of the Request class now accept a default argument.

• A new header property, expires, was added to the Response class.

• The CompiledRouter class now exposes a map_http_methods method that child classes can override
in order to customize the mapping of HTTP methods to resource class methods.

• The serialize() media handler method now receives an extra content_type argument, while the
deserialize() method now takes stream, content_type, and content_length arguments, rather than a single
raw argument. The raw data can still be obtained by executing raw = stream.read().

See also: BaseHandler

• The get_header() method now accepts a default keyword argument.

• The simulate_request() method now supports overriding the host and remote IP address in the WSGI
environment, as well as setting arbitrary additional CGI variables in the WSGI environment.

• The simulate_request() method now supports passing a query string as part of the path, as an alternative
to using the params or query_string keyword arguments.

• Added a deployment guide to the docs for uWSGI and NGINX on Linux.

• The decode()method now accepts an unquote_plus keyword argument. The new argument defaults to False
to avoid a breaking change.

• The if_match() and if_none_match() properties now return a list of falcon.ETag objects rather
than the raw value of the If-Match or If-None-Match headers, respectively.

• add_error_handler() now supports specifying an iterable of exception types to match.

• The default error serializer no longer sets the charset parameter for the media type returned in the Content-Type
header, since UTF-8 is the default encoding for both JSON and XML media types.

316 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

• Similar to the change made to the default error serializer, the default JSON media type generally used for
successful responses was also modified to no longer specify the charset parameter. This change affects
both the falcon.DEFAULT_MEDIA_TYPE and falcon.MEDIA_JSON constants, as well as the default
value of the media_type keyword argument specified for the falcon.API initializer. This change also
affects the default value of the RequestOptions.default_media_type and ResponseOptions.
default_media_type options.

Fixed

• Fixed a docs issue where with smaller browser viewports, the API documentation will start horizontal scrolling.

• The color scheme for the docs was modified to fix issues with contrast and readability when printing the docs or
generating PDFs.

• The simulate_request() method now forces header values to str on Python 2 as required by PEP-3333.

• The HTTPRequestEntityTooLarge class was renamed to HTTPPayloadTooLarge and the reason
phrase was updated per RFC 7231.

• The falcon.CaseInsensitiveDict class now inherits from collections.abc.
MutableMapping under Python 3, instead of collections.MutableMapping.

• The \ufffd character is now disallowed in requested static file paths.

• The falcon.media.validators.jsonschema.validate() decorator now uses functools.
wraps() to make the decorated method look like the original.

• The falcon-print-routes CLI tool no longer raises an unhandled error when Falcon is cythonized.

• The plus character ('+') is no longer unquoted in the request path, but only in the query string.

• Previously, HTTPError instances for which the has_representation property evaluated to False were not
passed to custom error serializers (such as in the case of types that subclass NoRepresentation). This has
now been fixed so that custom error serializers will be called for all instances of HTTPError.

• When setting the etag header property, the value will now be wrapped with double-quotes (if not already
present) to ensure compliance with RFC 7232.

• Fixed TypeError being raised when using Falcon’s testing framework to simulate a request to a generator-
based WSGI app.

Contributors to this Release

Many thanks to all of our talented and stylish contributors for this release!

• Bertrand Lemasle

• CaselIT

• DmitriiTrofimov

• KingAkeem

• Nateyo

• Patrick Schneeweis

• TheMushrr00m

• ZDBioHazard

• alysivji

5.5. Changelogs 317

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://github.com/CaselIT
https://github.com/DmitriiTrofimov
https://github.com/KingAkeem
https://github.com/Nateyo
https://github.com/TheMushrr00m
https://github.com/ZDBioHazard
https://github.com/alysivji

Falcon Documentation, Release 3.0.1

• aparkerlue

• astonm

• awbush

• bendemaree

• bkcsfi

• brooksryba

• carlodri

• grktsh

• hugovk

• jmvrbanac

• kandziu

• kgriffs

• klardotsh

• mikeylight

• mumrau

• nZac

• navyad

• ozzzik

• paneru-rajan

• safaozturk93

• santeyio

• sbensoussan

• selfvin

• snobu

• steven-upside

• tribals

• vytas7

5.5.4 Changelog for Falcon 1.4.1

Breaking Changes

(None)

318 Chapter 5. Documentation

https://github.com/aparkerlue
https://github.com/astonm
https://github.com/awbush
https://github.com/bendemaree
https://github.com/bkcsfi
https://github.com/brooksryba
https://github.com/carlodri
https://github.com/grktsh
https://github.com/hugovk
https://github.com/jmvrbanac
https://github.com/kandziu
https://github.com/kgriffs
https://github.com/klardotsh
https://github.com/mikeylight
https://github.com/mumrau
https://github.com/nZac
https://github.com/navyad
https://github.com/ozzzik
https://github.com/paneru-rajan
https://github.com/safaozturk93
https://github.com/santeyio
https://github.com/sbensoussan
https://github.com/selfvin
https://github.com/snobu
https://github.com/steven-upside
https://github.com/tribals
https://github.com/vytas7

Falcon Documentation, Release 3.0.1

Changes to Supported Platforms

(None)

New & Improved

(None)

Fixed

• Reverted the breaking change in 1.4.0 to falcon.testing.Result.json. Minor releases should have no
breaking changes.

• The README was not rendering properly on PyPI. This was fixed and a validation step was added to the build
process.

5.5.5 Changelog for Falcon 1.4.0

Breaking Changes

• falcon.testing.Result.json now returns None when the response body is empty, rather than raising
an error.

Changes to Supported Platforms

• Python 3 is now supported on PyPy as of PyPy3.5 v5.10.

• Support for CPython 3.3 is now deprecated and will be removed in Falcon 2.0.

• As with the previous release, Python 2.6 and Jython 2.7 remain deprecated and will no longer be supported in
Falcon 2.0.

New & Improved

• We added a new method, add_static_route(), that makes it easy to serve files from a local directory.
This feature provides an alternative to serving files from the web server when you don’t have that option, when
authorization is required, or for testing purposes.

• Arguments can now be passed to hooks (see Hooks).

• The default JSON media type handler will now use ujson, if available, to speed up JSON (de)serialization under
CPython.

• Semantic validation via the format keyword is now enabled for the validate() JSON Schema decorator.

• We added a new helper, get_param_as_uuid(), to the Request class.

• Falcon now supports WebDAV methods (RFC 3253), such as UPDATE and REPORT.

• We added a new property, downloadable_as, to the Response class for setting the Content-Disposition
header.

• create_http_method_map() has been refactored into two new methods, map_http_methods() and
set_default_responders(), so that custom routers can better pick and choose the functionality they
need. The original method is still available for backwards-compatibility, but will be removed in a future release.

5.5. Changelogs 319

https://pypi.python.org/pypi/ujson
https://www.ietf.org/rfc/rfc3253.txt

Falcon Documentation, Release 3.0.1

• We added a new json param to simulate_request() et al. to automatically serialize the request body from
a JSON serializable object or type (for a complete list of serializable types, see json.JSONEncoder).

• TestClient’s simulate_*()methods now call simulate_request() to make it easier for subclasses
to override TestClient’s behavior.

• TestClient can now be configured with a default set of headers to send with every request.

• The FAQ has been reorganized and greatly expanded.

• We restyled the docs to match https://falconframework.org

Fixed

• Forwarded headers containing quoted strings with commas were not being parsed correctly. This has been fixed,
and the parser generally made more robust.

• JSONHandler was raising an error under Python 2.x when serializing strings containing Unicode code points.
This issue has been fixed.

• Overriding a resource class and calling its responders via super() did not work when passing URI template
params as positional arguments. This has now been fixed.

• Python 3.6 was generating warnings for strings containing '\s' within Falcon. These strings have been con-
verted to raw strings to mitigate the warning.

• Several syntax errors were found and fixed in the code examples used in the docs.

Contributors to this Release

Many thanks to all of our talented and stylish contributors for this release!

• GriffGeorge

• hynek

• kgriffs

• rhemz

• santeyio

• timc13

• tyronegroves

• vytas7

• zhanghanyun

5.5.6 Changelog for Falcon 1.3.0

Breaking Changes

(None)

320 Chapter 5. Documentation

https://docs.python.org/3.6/library/json.html#json.JSONEncoder
https://falconframework.org

Falcon Documentation, Release 3.0.1

Changes to Supported Platforms

• CPython 3.6 is now fully supported.

• Falcon appears to work well on PyPy3.5, but we are waiting until that platform is out of beta before officially
supporting it.

• Support for both CPython 2.6 and Jython 2.7 is now deprecated and will be discontinued in Falcon 2.0.

New & Improved

• We added built-in resource representation serialization and deserialization, including input validation based on
JSON Schema. (See also: Media)

• URI template field converters are now supported. We expect to expand this feature over time. (See also: Field
Converters)

• A new method, get_param_as_datetime(), was added to Request.

• A number of attributes were added to Request to make proxy information easier to consume. These include the
forwarded, forwarded_uri, forwarded_scheme, forwarded_host, and forwarded_prefix
attributes. The prefix attribute was also added as part of this work.

• A referer attribute was added to Request.

• We implemented __repr__() for Request, Response, and HTTPError to aid in debugging.

• A number of Internet media type constants were defined to make it easier to check and set content type headers.
(See also: Media Type Constants)

• Several new 5xx error classes were implemented. (See also: Error Handling)

Fixed

• If even a single cookie in the request to the server is malformed, none of the cookies will be parsed (all-or-
nothing). Change the parser to simply skip bad cookies (best-effort).

• API instances are not pickleable. Modify the default router to fix this.

5.5.7 Changelog for Falcon 1.2.0

Breaking Changes

(None)

New & Improved

• A new default kwarg was added to get_header().

• A delete_header() method was added to falcon.Response.

• Several new HTTP status codes and error classes were added, such as falcon.HTTPFailedDependency .

• If ujson is installed it will be used in lieu of json to speed up error serialization and query string parsing under
CPython. PyPy users should continue to use json.

• The independent_middleware kwarg was added to falcon.API to enable the execution of process_response()
middleware methods, even when process_request() raises an error.

5.5. Changelogs 321

Falcon Documentation, Release 3.0.1

• Single-character field names are now allowed in URL templates when specifying a route.

• A detailed error message is now returned when an attempt is made to add a route that conflicts with one that has
already been added.

• The HTTP protocol version can now be specified when simulating requests with the testing framework.

• The falcon.ResponseOptions class was added, along with a secure_cookies_by_default option to control
the default value of the “secure” attribute when setting cookies. This can make testing easier by providing a way
to toggle whether or not HTTPS is required.

• port, netloc and scheme properties were added to the falcon.Request class. The protocol property is now
deprecated and will be removed in a future release.

• The strip_url_path_trailing_slash was added to falcon.RequestOptions to control whether or not to
retain the trailing slash in the URL path, if one is present. When this option is enabled (the default), the URL
path is normalized by stripping the trailing slash character. This lets the application define a single route to a
resource for a path that may or may not end in a forward slash. However, this behavior can be problematic in
certain cases, such as when working with authentication schemes that employ URL-based signatures. Therefore,
the strip_url_path_trailing_slash option was introduced to make this behavior configurable.

• Improved the documentation for falcon.HTTPError, particularly around customizing error serialization.

• Misc. improvements to the look and feel of Falcon’s documentation.

• The tutorial in the docs was revamped, and now includes guidance on testing Falcon applications.

Fixed

• Certain non-alphanumeric characters, such as parenthesis, are not handled properly in complex URI template
path segments that are comprised of both literal text and field definitions.

• When the WSGI server does not provide a wsgi.file_wrapper object, Falcon wraps Response.stream in a
simple iterator object that does not implement close(). The iterator should be modified to implement a close()
method that calls the underlying stream’s close() to free system resources.

• The testing framework does not correctly parse cookies under Jython.

• Whitespace is not stripped when parsing cookies in the testing framework.

• The Vary header is not always set by the default error serializer.

• While not specified in PEP-3333 that the status returned to the WSGI server must be of type str, setting the
status on the response to a unicode string under Python 2.6 or 2.7 can cause WSGI servers to raise an error.
Therefore, the status string must first be converted if it is of the wrong type.

• The default OPTIONS responder returns 204, when it should return 200. RFC 7231 specifically states that
Content-Length should be zero in the response to an OPTIONS request, which implies a status code of 200
since RFC 7230 states that Content-Length must not be set in any response with a status code of 204.

322 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

5.5.8 Changelog for Falcon 1.1.0

Breaking Changes

(None)

New & Improved

• A new bounded_stream property was added to falcon.Request that can be used in place of the stream
property to mitigate the blocking behavior of input objects used by some WSGI servers.

• A new uri_template property was added to Request to expose the template for the route corresponding to the
path requested by the user agent.

• A context property was added to Response to mirror the same property that is already available for Request.

• JSON-encoded query parameter values can now be retrieved and decoded in a single step via
get_param_as_dict().

• CSV-style parsing of query parameter values can now be disabled.

• get_param_as_bool() now recognizes “on” and “off” in support of IE’s default checkbox values.

• An accept_ranges property was added to Response to facilitate setting the Accept-Ranges header.

• Added the HTTPUriTooLong and HTTPGone error classes.

• When a title is not specified for HTTPError, it now defaults to the HTTP status text.

• All parameters are now optional for most error classes.

• Cookie-related documentation has been clarified and expanded

• The falcon.testing.Cookie class was added to represent a cookie returned by a simulated request.
falcon.testing.Result now exposes a cookies attribute for examining returned cookies.

• pytest support was added to Falcon’s testing framework. Apps can now choose to either write unittest- or
pytest-style tests.

• The test runner for Falcon’s own tests was switched from nose to pytest.

• When simulating a request using Falcon’s testing framework, query string parameters can now be specified as a
dict, as an alternative to passing a raw query string.

• A flag is now passed to the process_request middleware method to signal whether or not an exception was raised
while processing the request. A shim was added to avoid breaking existing middleware methods that do not yet
accept this new parameter.

• A new CLI utility, falcon-print-routes, was added that takes in a module:callable, introspects the routes, and
prints the results to stdout. This utility is automatically installed along with the framework:

$ falcon-print-routes commissaire:api
-> /api/v0/status
-> /api/v0/cluster/{name}
-> /api/v0/cluster/{name}/hosts
-> /api/v0/cluster/{name}/hosts/{address}

• Custom attributes can now be attached to instances of Request and Response. This can be used as an
alternative to adding values to the context property, or implementing custom subclasses.

• get_http_status() was implemented to provide a way to look up a full HTTP status line, given just a
status code.

5.5. Changelogs 323

https://docs.python.org/3/library/stdtypes.html#dict

Falcon Documentation, Release 3.0.1

Fixed

• When auto_parse_form_urlencoded is set to True, the framework now checks the HTTP method
before attempting to consume and parse the body.

• Before attempting to read the body of a form-encoded request, the framework now checks the Content-Length
header to ensure that a non-empty body is expected. This helps prevent bad requests from causing a blocking
read when running behind certain WSGI servers.

• When the requested method is not implemented for the target resource, the framework now raises
HTTPMethodNotAllowed, rather than modifying the Request object directly. This improves visibility
for custom error handlers and for middleware methods.

• Error class docstrings have been updated to reflect the latest RFCs.

• When an error is raised by a resource method or a hook, the error will now always be processed (including
setting the appropriate properties of the Response object) before middleware methods are called.

• A case was fixed in which middleware processing did not continue when an instance of HTTPError or
HTTPStatus was raised.

• The encode() method will now attempt to detect whether the specified string has already been encoded, and
return it unchanged if that is the case.

• The default OPTIONS responder now explicitly sets Content-Length to zero in the response.

• falcon.testing.Result now assumes that the response body is encoded as UTF-8 when the character
set is not specified, rather than raising an error when attempting to decode the response body.

• When simulating requests, Falcon’s testing framework now properly tunnels Unicode characters through the
WSGI interface.

• import falcon.uri now works, in addition to from falcon import uri.

• URI template fields are now validated up front, when the route is added, to ensure they are valid Python identi-
fiers. This prevents cryptic errors from being raised later on when requests are routed.

• When running under Python 3, inspect.signature() is used instead of inspect.getargspec() to
provide compatibility with annotated functions.

5.5.9 Changelog for Falcon 1.0.0

Breaking Changes

• The deprecated global hooks feature has been removed. API no longer accepts before and after kwargs. Appli-
cations can work around this by migrating any logic contained in global hooks to reside in middleware compo-
nents instead.

• The middleware method process_resource() must now accept an additional params argument. This
gives the middleware method an opportunity to interact with the values for any fields defined in a route’s URI
template.

• The middleware method process_resource() is now skipped when no route is found for the incoming
request. This avoids having to include an if resource is not None check when implementing this
method. A sink may be used instead to execute logic in the case that no route is found.

• An option was added to toggle automatic parsing of form params. Falcon will no longer automatically parse,
by default, requests that have the content type “application/x-www-form-urlencoded”. This was done to avoid
unintended side-effects that may arise from consuming the request stream. It also makes it more straightforward

324 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

for applications to customize and extend the handling of form submissions. Applications that require this func-
tionality must re-enable it explicitly, by setting a new request option that was added for that purpose, per the
example below:

app = falcon.API()
app.req_options.auto_parse_form_urlencoded = True

• The HTTPUnauthorized initializer now requires an additional argument, challenges. Per RFC 7235, a server
returning a 401 must include a WWW-Authenticate header field containing at least one challenge.

• The performance of composing the response body was improved. As part of this work, the Response.
body_encoded attribute was removed. This property was only intended to be used by the framework itself,
but any dependent code can be migrated per the example below:

Before
body = resp.body_encoded

After
if resp.body:

body = resp.body.encode('utf-8')
else:

body = b''

New & Improved

• A code of conduct was added to solidify our community’s commitment to sustaining a welcoming, respectful
culture.

• CPython 3.5 is now fully supported.

• The constants HTTP_422, HTTP_428, HTTP_429, HTTP_431, HTTP_451, and HTTP_511 were added.

• The HTTPUnprocessableEntity , HTTPTooManyRequests, and
HTTPUnavailableForLegalReasons error classes were added.

• The HTTPStatus class is now available directly under the falcon module, and has been properly documented.

• Support for HTTP redirections was added via a set of HTTPStatus subclasses. This should avoid the problem
of hooks and responder methods possibly overriding the redirect. Raising an instance of one of these new
redirection classes will short-circuit request processing, similar to raising an instance of HTTPError.

• The default 404 responder now raises an instance of HTTPError instead of manipulating the response object
directly. This makes it possible to customize the response body using a custom error handler or serializer.

• A new method, get_header(), was added to Response. Previously there was no way to check if a header
had been set. The new get_header() method facilitates this and other use cases.

• falcon.Request.client_accepts_msgpack() now recognizes “application/msgpack”, in addition
to “application/x-msgpack”.

• New access_route and remote_addr properties were added to Request for getting upstream IP ad-
dresses.

• Request and Response now support range units other than bytes.

• The API and StartResponseMock class types can now be customized by inheriting from TestBase and
overriding the api_class and srmock_class class attributes.

• Path segments with multiple field expressions may now be defined at the same level as path segments having
only a single field expression. For example:

5.5. Changelogs 325

https://github.com/falconry/falcon/blob/master/CODEOFCONDUCT.md

Falcon Documentation, Release 3.0.1

api.add_route('/files/{file_id}', resource_1)
api.add_route('/files/{file_id}.{ext}', resource_2)

• Support was added to API.add_route() for passing through additional args and kwargs to custom routers.

• Digits and the underscore character are now allowed in the falcon.routing.
compile_uri_template() helper, for use in custom router implementations.

• A new testing framework was added that should be more intuitive to use than the old one. Several of Falcon’s
own tests were ported to use the new framework (the remainder to be ported in a subsequent release.) The new
testing framework performs wsgiref validation on all requests.

• The performance of setting Response.content_range was improved by ~50%.

• A new param, obs_date, was added to falcon.Request.get_header_as_datetime(), and defaults
to False. This improves the method’s performance when obsolete date formats do not need to be supported.

Fixed

• Field expressions at a given level in the routing tree no longer mask alternative branches. When a single seg-
ment in a requested path can match more than one node at that branch in the routing tree, and the first branch
taken happens to be the wrong one (i.e., the subsequent nodes do not match, but they would have under a dif-
ferent branch), the other branches that could result in a successful resolution of the requested path will now be
subsequently tried, whereas previously the framework would behave as if no route could be found.

• The user agent is now instructed to expire the cookie when it is cleared via unset_cookie().

• Support was added for hooks that have been defined via functools.partial().

• Tunneled UTF-8 characters in the request path are now properly decoded, and a placeholder character is substi-
tuted for any invalid code points.

• The instantiation of context_type is now delayed until after all other properties of the Request class have
been initialized, in case the context type’s own initialization depends on any of Request’s properties.

• A case was fixed in which reading from stream could hang when using wsgiref to host the app.

• The default error serializer now sets the Vary header in responses. Implementing this required passing the
Response object to the serializer, which would normally be a breaking change. However, the framework was
modified to detect old-style error serializers and wrap them with a shim to make them compatible with the new
interface.

• A query string containing malformed percent-encoding no longer causes the framework to raise an error.

• Additional tests were added for a few lines of code that were previously not covered, due to deficiencies in code
coverage reporting that have since been corrected.

• The Cython note is no longer displayed when installing under Jython.

• Several errors and ambiguities in the documentation were corrected.

326 Chapter 5. Documentation

https://docs.python.org/3/library/wsgiref.html#module-wsgiref

Falcon Documentation, Release 3.0.1

5.5.10 Changelog for Falcon 0.3.0

Breaking Changes

• Date headers are now returned as datetime.datetime objects instead of strings.

• The expected signature for the add_route() method of custom routers no longer includes a method_map
parameter. Custom routers should, instead, call the falcon.routing.util.map_http_methods()
function directly from their add_route() method if they require this mapping.

New & Improved

• This release includes a new router architecture for improved performance and flexibility.

• A custom router can now be specified when instantiating the API class.

• URI templates can now include multiple parameterized fields within a single path segment.

• Falcon now supports reading and writing cookies.

• Falcon now supports Jython 2.7.

• A method for getting a query param as a date was added to the Request class.

• Date headers are now returned as datetime.datetime objects.

• A default value can now be specified when calling Request.get_param(). This provides an alternative to
using the pattern:

value = req.get_param(name) or default_value

• Friendly constants for status codes were added (e.g., falcon.HTTP_NO_CONTENT vs. falcon.
HTTP_204.)

• Several minor performance optimizations were made to the code base.

Fixed

• The query string parser was modified to improve handling of percent-encoded data.

• Several errors in the documentation were corrected.

• The six package was pinned to 1.4.0 or better. six.PY2 is required by Falcon, but that wasn’t added to six
until version 1.4.0.

5.5.11 Changelog for Falcon 0.2.0

Breaking Changes

• The deprecated util.misc.percent_escape and util.misc.percent_unescape functions were removed. Please use
the functions in the util.uri module instead.

• The deprecated function, API.set_default_route, was removed. Please use sinks instead.

• HTTPRangeNotSatisfiable no longer accepts a media_type parameter.

• When using the comma-delimited list convention, req.get_param_as_list(. . .) will no longer insert placeholders,
using the None type, for empty elements. For example, where previously the query string “foo=1„3” would
result in [‘1’, None, ‘3’], it will now result in [‘1’, ‘3’].

5.5. Changelogs 327

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Falcon Documentation, Release 3.0.1

New & Improved

• Since 0.1 we’ve added proper RTD docs to make it easier for everyone to get started with the framework. Over
time we will continue adding content, and we would love your help!

• Falcon now supports “wsgi.filewrapper”. You can assign any file-like object to resp.stream and Falcon will use
“wsgi.filewrapper” to more efficiently pipe the data to the WSGI server.

• Support was added for automatically parsing requests containing “application/x-www-form-urlencoded” con-
tent. Form fields are now folded into req.params.

• Custom Request and Response classes are now supported. You can specify custom types when instantiating
falcon.API.

• A new middleware feature was added to the framework. Middleware deprecates global hooks, and we encourage
everyone to migrate as soon as possible.

• A general-purpose dict attribute was added to Request. Middleware, hooks, and responders can now use
req.context to share contextual information about the current request.

• A new method, append_header, was added to falcon.API to allow setting multiple values for the same header
using comma separation. Note that this will not work for setting cookies, but we plan to address this in the next
release (0.3).

• A new “resource” attribute was added to hooks. Old hooks that do not accept this new attribute are shimmed
so that they will continue to function. While we have worked hard to minimize the performance impact, we
recommend migrating to the new function signature to avoid any overhead.

• Error response bodies now support XML in addition to JSON. In addition, the HTTPError serialization code
was refactored to make it easier to implement a custom error serializer.

• A new method, “set_error_serializer” was added to falcon.API. You can use this method to override Falcon’s
default HTTPError serializer if you need to support custom media types.

• Falcon’s testing base class, testing.TestBase was improved to facilitate Py3k testing. Notably, Test-
Base.simulate_request now takes an additional “decode” kwarg that can be used to automatically decode byte-
string PEP-3333 response bodies.

• An “add_link” method was added to the Response class. Apps can use this method to add one or more Link
header values to a response.

• Added two new properties, req.host and req.subdomain, to make it easier to get at the hostname info in the
request.

• Allow a wider variety of characters to be used in query string params.

• Internal APIs have been refactored to allow overriding the default routing mechanism. Further modularization
is planned for the next release (0.3).

• Changed req.get_param so that it behaves the same whether a list was specified in the query string using the
HTML form style (in which each element is listed in a separate ‘key=val’ field) or in the more compact API style
(in which each element is comma-separated and assigned to a single param instance, as in ‘key=val1,val2,val3’)

• Added a convenience method, set_stream(. . .), to the Response class for setting the stream and its length at the
same time, which should help people not forget to set both (and save a few keystrokes along the way).

• Added several new error classes, including HTTPRequestEntityTooLarge, HTTPInvalidParam, HTTPMissing-
Param, HTTPInvalidHeader and HTTPMissingHeader.

• Python 3.4 is now fully supported.

• Various minor performance improvements

328 Chapter 5. Documentation

Falcon Documentation, Release 3.0.1

Fixed

• Ensure 100% test coverage and fix any bugs identified in the process.

• Fix not recognizing the “bytes=” prefix in Range headers.

• Make HTTPNotFound and HTTPMethodNotAllowed fully compliant, according to RFC 7231.

• Fixed the default on_options responder causing a Cython type error.

• URI template strings can now be of type unicode under Python 2.

• When SCRIPT_NAME is not present in the WSGI environ, return an empty string for the req.app property.

• Global “after” hooks will now be executed even when a responder raises an error.

• Fixed several minor issues regarding testing.create_environ(. . .)

• Work around a wsgiref quirk, where if no content-length header is submitted by the client, wsgiref will set the
value of that header to an empty string in the WSGI environ.

• Resolved an issue causing several source files to not be Cythonized.

• Docstrings have been edited for clarity and correctness.

5.5. Changelogs 329

Falcon Documentation, Release 3.0.1

330 Chapter 5. Documentation

PYTHON MODULE INDEX

f
falcon.uri, 263

331

Falcon Documentation, Release 3.0.1

332 Python Module Index

INDEX

A
accept (falcon.asgi.Request attribute), 143
accept (falcon.Request attribute), 117
accept() (falcon.asgi.WebSocket method), 176
accept_ranges() (falcon.asgi.Response property),

158
accept_ranges() (falcon.Response property), 131
access_route (falcon.asgi.Request attribute), 143
access_route (falcon.Request attribute), 116
add_error_handler() (falcon.App method), 99
add_error_handler() (falcon.asgi.App method),

107
add_middleware() (falcon.App method), 100
add_route() (falcon.App method), 100
add_route() (falcon.asgi.App method), 108
add_route() (falcon.routing.CompiledRouter

method), 253
add_sink() (falcon.App method), 102
add_sink() (falcon.asgi.App method), 109
add_static_route() (falcon.App method), 102
after() (in module falcon), 245
App (class in falcon), 97
App (class in falcon.asgi), 104
app (falcon.Request attribute), 115
app (falcon.testing.ASGIConductor attribute), 277
app (falcon.testing.TestCase attribute), 302
app (falcon.testing.TestClient attribute), 275
append_header() (falcon.asgi.Response method),

158
append_header() (falcon.Response method), 131
append_link() (falcon.asgi.Response method), 159
append_link() (falcon.Response method), 131
AppInfo (class in falcon.inspect), 260
ASGIConductor (class in falcon.testing), 276
ASGILifespanEventEmitter (class in fal-

con.testing), 298
ASGIRequestEventEmitter (class in fal-

con.testing), 297
ASGIResponseEventCollector (class in fal-

con.testing), 298
ASGIWebSocketSimulator (class in falcon.testing),

280

async_to_sync() (in module falcon), 269
auth (falcon.asgi.Request attribute), 143
auth (falcon.Request attribute), 117
auto_parse_form_urlencoded (fal-

con.RequestOptions attribute), 110
auto_parse_qs_csv (falcon.RequestOptions at-

tribute), 110

B
BaseConverter (class in falcon.routing), 250
BaseHandler (class in falcon.media), 226
before() (in module falcon), 244
BinaryBaseHandlerWS (class in falcon.media), 178
body (falcon.asgi.Response attribute), 156
body (falcon.HTTPStatus attribute), 184
body (falcon.Response attribute), 129
body_chunks (falcon.testing.ASGIResponseEventCollector

attribute), 298
BodyPart (class in falcon.media.multipart), 230
bounded_stream (falcon.Request attribute), 118
BoundedStream (class in falcon.asgi), 153
BoundedStream (class in falcon.stream), 128

C
cache_control() (falcon.asgi.Response property),

160
cache_control() (falcon.Response property), 132
call_count (falcon.testing.StartResponseMock

attribute), 297
called (falcon.testing.SimpleTestResource attribute),

303
capture_responder_args() (in module fal-

con.testing), 296
capture_responder_args_async() (in module

falcon.testing), 296
captured_kwargs (fal-

con.testing.SimpleTestResource attribute),
304

captured_req (falcon.testing.SimpleTestResource at-
tribute), 303

captured_resp (falcon.testing.SimpleTestResource
attribute), 303

333

Falcon Documentation, Release 3.0.1

client_accepts() (falcon.asgi.Request method),
146

client_accepts() (falcon.Request method), 120
client_accepts_json (falcon.asgi.Request at-

tribute), 144
client_accepts_json (falcon.Request attribute),

117
client_accepts_msgpack (falcon.asgi.Request at-

tribute), 144
client_accepts_msgpack (falcon.Request at-

tribute), 117
client_accepts_xml (falcon.asgi.Request at-

tribute), 144
client_accepts_xml (falcon.Request attribute),

117
client_prefers() (falcon.asgi.Request method),

146
client_prefers() (falcon.Request method), 120
close() (falcon.asgi.BoundedStream method), 154
close() (falcon.asgi.WebSocket method), 177
close() (falcon.testing.ASGIWebSocketSimulator

method), 281
close_code (falcon.testing.ASGIWebSocketSimulator

attribute), 281
closed (falcon.asgi.WebSocket attribute), 176
closed (falcon.testing.ASGIWebSocketSimulator

attribute), 280
closed_wsgi_iterable() (in module fal-

con.testing), 302
code (falcon.HTTPError attribute), 190
code (falcon.WebSocketDisconnected attribute), 180
code_to_http_status() (in module falcon), 267
comment (falcon.asgi.SSEvent attribute), 168
compile_uri_template() (in module fal-

con.routing), 255
CompiledRouter (class in falcon.routing), 253
complete (falcon.asgi.Response attribute), 158
complete (falcon.Response attribute), 131
content (falcon.testing.Result attribute), 279
content_length (falcon.asgi.Request attribute), 144
content_length (falcon.Request attribute), 118
content_length() (falcon.asgi.Response property),

160
content_length() (falcon.Response property), 132
content_location() (falcon.asgi.Response prop-

erty), 160
content_location() (falcon.Response property),

133
content_range() (falcon.asgi.Response property),

160
content_range() (falcon.Response property), 133
content_type (falcon.asgi.Request attribute), 144
content_type (falcon.media.multipart.BodyPart at-

tribute), 230

content_type (falcon.Request attribute), 118
content_type() (falcon.asgi.Response property),

160
content_type() (falcon.Response property), 133
Context (class in falcon), 271
context (falcon.asgi.Request attribute), 139
context (falcon.asgi.Response attribute), 157
context (falcon.Request attribute), 113
context (falcon.Response attribute), 130
context_type (falcon.asgi.Request attribute), 140
context_type (falcon.asgi.Response attribute), 157
context_type (falcon.Request attribute), 113
context_type (falcon.Response attribute), 130
convert() (falcon.routing.BaseConverter method),

250
convert() (falcon.routing.DateTimeConverter

method), 250
convert() (falcon.routing.IntConverter method), 250
convert() (falcon.routing.UUIDConverter method),

250
Cookie (class in falcon.testing), 282
cookies (falcon.asgi.Request attribute), 144
cookies (falcon.Request attribute), 117
cookies (falcon.testing.Result attribute), 279
cookies (falcon.testing.StreamedResult attribute), 280
CORSMiddleware (class in falcon), 242
create_asgi_req() (in module falcon.testing), 301
create_environ() (in module falcon.testing), 298
create_req() (in module falcon.testing), 301
create_scope() (in module falcon.testing), 300
create_scope_ws() (in module falcon.testing), 300
create_task() (in module falcon), 268

D
data (falcon.asgi.Response attribute), 156
data (falcon.asgi.SSEvent attribute), 167
data (falcon.media.multipart.BodyPart attribute), 230
data (falcon.Response attribute), 130
date (falcon.asgi.Request attribute), 143
date (falcon.Request attribute), 117
DateTimeConverter (class in falcon.routing), 250
decode() (in module falcon.uri), 263
default_charset (fal-

con.media.multipart.MultipartParseOptions
attribute), 233

default_media_type (falcon.RequestOptions at-
tribute), 111

default_media_type (falcon.ResponseOptions at-
tribute), 111

delete_header() (falcon.asgi.Response method),
160

delete_header() (falcon.Response method), 133
deprecated() (in module falcon), 270
description (falcon.HTTPError attribute), 190

334 Index

Falcon Documentation, Release 3.0.1

deserialize() (falcon.media.BaseHandler method),
227

deserialize() (fal-
con.media.BinaryBaseHandlerWS method),
178

deserialize() (falcon.media.TextBaseHandlerWS
method), 178

deserialize_async() (falcon.media.BaseHandler
method), 227

dest (falcon.Forwarded attribute), 127
disconnect() (falcon.testing.ASGIRequestEventEmitter

method), 297
disconnected (falcon.testing.ASGIRequestEventEmitter

attribute), 297
domain (falcon.testing.Cookie attribute), 282
downloadable_as() (falcon.asgi.Response prop-

erty), 161
downloadable_as() (falcon.Response property),

133
dst() (falcon.TimezoneGMT method), 266
dt_to_http() (in module falcon), 266
dumps() (falcon.ETag method), 272

E
encode() (in module falcon.uri), 263
encode_check_escaped() (in module falcon.uri),

264
encode_value() (in module falcon.uri), 264
encode_value_check_escaped() (in module fal-

con.uri), 264
encoding (falcon.testing.Result attribute), 279
encoding (falcon.testing.StreamedResult attribute),

280
env (falcon.Request attribute), 113
eof (falcon.stream.BoundedStream attribute), 128
error_close_code (falcon.asgi.WebSocketOptions

attribute), 180
ErrorHandlerInfo (class in falcon.inspect), 262
ETag (class in falcon), 272
etag() (falcon.asgi.Response property), 161
etag() (falcon.Response property), 133
event (falcon.asgi.SSEvent attribute), 168
event_id (falcon.asgi.SSEvent attribute), 168
events (falcon.testing.ASGIResponseEventCollector

attribute), 298
exhaust() (falcon.asgi.BoundedStream method), 154
exhaust() (falcon.stream.BoundedStream method),

128
exhaust_stream (falcon.media.BaseHandler at-

tribute), 228
expect (falcon.asgi.Request attribute), 144
expect (falcon.Request attribute), 119
expires (falcon.testing.Cookie attribute), 282
expires() (falcon.asgi.Response property), 161

expires() (falcon.Response property), 134

F
falcon.uri

module, 263
filename (falcon.media.multipart.BodyPart attribute),

230
fileno() (falcon.asgi.BoundedStream method), 154
finalize() (falcon.testing.StreamedResult method),

280
find() (falcon.routing.CompiledRouter method), 254
Forwarded (class in falcon), 127
forwarded (falcon.asgi.Request attribute), 143
forwarded (falcon.Request attribute), 117
forwarded_host (falcon.asgi.Request attribute), 141
forwarded_host (falcon.Request attribute), 114
forwarded_prefix (falcon.asgi.Request attribute),

142
forwarded_prefix (falcon.Request attribute), 115
forwarded_scheme (falcon.asgi.Request attribute),

140
forwarded_scheme (falcon.Request attribute), 114
forwarded_uri (falcon.asgi.Request attribute), 142
forwarded_uri (falcon.Request attribute), 115

G
get_bound_method() (in module falcon), 270
get_cookie_values() (falcon.asgi.Request

method), 146
get_cookie_values() (falcon.Request method),

120
get_data() (falcon.media.multipart.BodyPart

method), 232
get_encoding_from_headers() (in module fal-

con.testing), 304
get_header() (falcon.asgi.Request method), 146
get_header() (falcon.asgi.Response method), 161
get_header() (falcon.Request method), 121
get_header() (falcon.Response method), 134
get_header_as_datetime() (falcon.asgi.Request

method), 146
get_header_as_datetime() (falcon.Request

method), 121
get_http_status() (in module falcon), 267
get_media() (falcon.asgi.Request method), 147
get_media() (falcon.media.multipart.BodyPart

method), 232
get_media() (falcon.Request method), 121
get_param() (falcon.asgi.Request method), 147
get_param() (falcon.Request method), 122
get_param_as_bool() (falcon.asgi.Request

method), 148
get_param_as_bool() (falcon.Request method),

123

Index 335

Falcon Documentation, Release 3.0.1

get_param_as_date() (falcon.asgi.Request
method), 149

get_param_as_date() (falcon.Request method),
123

get_param_as_datetime() (falcon.asgi.Request
method), 149

get_param_as_datetime() (falcon.Request
method), 124

get_param_as_float() (falcon.asgi.Request
method), 149

get_param_as_float() (falcon.Request method),
124

get_param_as_int() (falcon.asgi.Request method),
150

get_param_as_int() (falcon.Request method), 124
get_param_as_json() (falcon.asgi.Request

method), 150
get_param_as_json() (falcon.Request method),

125
get_param_as_list() (falcon.asgi.Request

method), 151
get_param_as_list() (falcon.Request method),

125
get_param_as_uuid() (falcon.asgi.Request

method), 152
get_param_as_uuid() (falcon.Request method),

126
get_running_loop() (in module falcon), 268
get_text() (falcon.media.multipart.BodyPart

method), 232
get_unused_port() (in module falcon.testing), 304

H
Handlers (class in falcon.media), 228
has_param() (falcon.asgi.Request method), 152
has_param() (falcon.Request method), 127
headers (falcon.asgi.Request attribute), 145
headers (falcon.asgi.Response attribute), 158
headers (falcon.HTTPError attribute), 190
headers (falcon.HTTPStatus attribute), 184
headers (falcon.Request attribute), 120
headers (falcon.Response attribute), 130
headers (falcon.testing.ASGIResponseEventCollector

attribute), 298
headers (falcon.testing.ASGIWebSocketSimulator at-

tribute), 281
headers (falcon.testing.Result attribute), 278
headers (falcon.testing.StartResponseMock attribute),

297
headers (falcon.testing.StreamedResult attribute), 279
headers_dict (falcon.testing.StartResponseMock at-

tribute), 297
host (falcon.asgi.Request attribute), 141
host (falcon.Forwarded attribute), 127

host (falcon.Request attribute), 114
http_date_to_dt() (in module falcon), 266
http_now() (in module falcon), 266
http_only (falcon.testing.Cookie attribute), 282
http_status_to_code() (in module falcon), 267
HTTPBadGateway (class in falcon), 213
HTTPBadRequest (class in falcon), 190
HTTPConflict (class in falcon), 199
HTTPError (class in falcon), 189
HTTPFailedDependency (class in falcon), 207
HTTPForbidden (class in falcon), 195
HTTPFound, 234
HTTPGatewayTimeout (class in falcon), 214
HTTPGone (class in falcon), 200
HTTPInsufficientStorage (class in falcon), 216
HTTPInternalServerError (class in falcon), 211
HTTPInvalidHeader (class in falcon), 191
HTTPInvalidParam (class in falcon), 192
HTTPLengthRequired (class in falcon), 201
HTTPLocked (class in falcon), 206
HTTPLoopDetected (class in falcon), 217
HTTPMethodNotAllowed (class in falcon), 197
HTTPMissingHeader (class in falcon), 192
HTTPMissingParam (class in falcon), 193
HTTPMovedPermanently, 234
HTTPNetworkAuthenticationRequired (class

in falcon), 217
HTTPNotAcceptable (class in falcon), 198
HTTPNotFound (class in falcon), 196
HTTPNotImplemented (class in falcon), 212
HTTPPayloadTooLarge (class in falcon), 202
HTTPPermanentRedirect, 235
HTTPPreconditionFailed (class in falcon), 201
HTTPPreconditionRequired (class in falcon), 208
HTTPRangeNotSatisfiable (class in falcon), 205
HTTPRequestHeaderFieldsTooLarge (class in

falcon), 210
HTTPRouteNotFound (class in falcon), 196
HTTPSeeOther, 234
HTTPServiceUnavailable (class in falcon), 213
HTTPStatus (class in falcon), 184
HTTPTemporaryRedirect, 234
HTTPTooManyRequests (class in falcon), 209
HTTPUnauthorized (class in falcon), 194
HTTPUnavailableForLegalReasons (class in

falcon), 210
HTTPUnprocessableEntity (class in falcon), 206
HTTPUnsupportedMediaType (class in falcon), 204
HTTPUriTooLong (class in falcon), 203
HTTPVersionNotSupported (class in falcon), 215

I
if_match (falcon.asgi.Request attribute), 145
if_match (falcon.Request attribute), 119

336 Index

Falcon Documentation, Release 3.0.1

if_modified_since (falcon.asgi.Request attribute),
145

if_modified_since (falcon.Request attribute), 120
if_none_match (falcon.asgi.Request attribute), 145
if_none_match (falcon.Request attribute), 119
if_range (falcon.asgi.Request attribute), 145
if_range (falcon.Request attribute), 120
if_unmodified_since (falcon.asgi.Request at-

tribute), 145
if_unmodified_since (falcon.Request attribute),

120
independent_text (falcon.inspect.MiddlewareInfo

attribute), 261
inspect_app() (in module falcon.inspect), 258
inspect_compiled_router() (in module fal-

con.inspect), 259
inspect_error_handlers() (in module fal-

con.inspect), 259
inspect_middleware() (in module falcon.inspect),

258
inspect_routes() (in module falcon.inspect), 258
inspect_sinks() (in module falcon.inspect), 259
inspect_static_routes() (in module fal-

con.inspect), 258
InspectVisitor (class in falcon.inspect), 262
IntConverter (class in falcon.routing), 249
is_exhausted (falcon.stream.BoundedStream at-

tribute), 128
is_python_func() (in module falcon), 271
is_weak (falcon.ETag attribute), 272
is_websocket (falcon.asgi.Request attribute), 140
isatty() (falcon.asgi.BoundedStream method), 154

J
json (falcon.asgi.SSEvent attribute), 167
json (falcon.testing.Result attribute), 279
JSONHandler (class in falcon.media), 224
JSONHandlerWS (class in falcon.media), 178

K
keep_blank_qs_values (falcon.RequestOptions at-

tribute), 110

L
last_modified() (falcon.asgi.Response property),

161
last_modified() (falcon.Response property), 134
link (falcon.HTTPError attribute), 190
loads() (falcon.ETag class method), 272
location() (falcon.asgi.Response property), 161
location() (falcon.Response property), 134
log_error() (falcon.asgi.Request method), 152
log_error() (falcon.Request method), 127

M
map_http_methods() (fal-

con.routing.CompiledRouter method), 254
map_http_methods() (in module falcon.routing),

254
max_age (falcon.testing.Cookie attribute), 282
max_body_part_buffer_size (fal-

con.media.multipart.MultipartParseOptions
attribute), 233

max_body_part_count (fal-
con.media.multipart.MultipartParseOptions
attribute), 233

max_body_part_headers_size (fal-
con.media.multipart.MultipartParseOptions
attribute), 233

max_receive_queue (falcon.asgi.WebSocketOptions
attribute), 180

media (falcon.asgi.Request attribute), 144
media (falcon.asgi.Response attribute), 155
media (falcon.media.multipart.BodyPart attribute), 231
media (falcon.Request attribute), 119
media (falcon.Response attribute), 129
media_handlers (falcon.asgi.WebSocketOptions at-

tribute), 180
media_handlers (fal-

con.media.multipart.MultipartParseOptions
attribute), 233

media_handlers (falcon.RequestOptions attribute),
111

media_handlers (falcon.ResponseOptions attribute),
111

MediaMalformedError (class in falcon), 219
MediaNotFoundError (class in falcon), 218
MessagePackHandler (class in falcon.media), 225
MessagePackHandlerWS (class in falcon.media),

179
method (falcon.asgi.Request attribute), 140
method (falcon.Request attribute), 114
MiddlewareClassInfo (class in falcon.inspect), 261
MiddlewareInfo (class in falcon.inspect), 261
MiddlewareMethodInfo (class in falcon.inspect),

261
MiddlewareTreeInfo (class in falcon.inspect), 261
MiddlewareTreeItemInfo (class in fal-

con.inspect), 261
module

falcon.uri, 263
more_body (falcon.testing.ASGIResponseEventCollector

attribute), 298
MultipartFormHandler (class in falcon.media),

225
MultipartParseError (class in fal-

con.media.multipart), 233

Index 337

Falcon Documentation, Release 3.0.1

MultipartParseOptions (class in fal-
con.media.multipart), 233

N
name (falcon.media.multipart.BodyPart attribute), 230
name (falcon.testing.Cookie attribute), 282
netloc (falcon.asgi.Request attribute), 141
netloc (falcon.Request attribute), 115
next() (falcon.stream.BoundedStream method), 128

O
options (falcon.asgi.Request attribute), 146
options (falcon.asgi.Response attribute), 158
options (falcon.Request attribute), 120
options (falcon.Response attribute), 130

P
params (falcon.asgi.Request attribute), 145
params (falcon.Request attribute), 120
parse_host() (in module falcon.uri), 265
parse_query_string() (in module falcon.uri), 265
path (falcon.asgi.Request attribute), 142
path (falcon.Request attribute), 116
path (falcon.testing.Cookie attribute), 282
PayloadTypeError (class in falcon), 180
port (falcon.asgi.Request attribute), 141
port (falcon.Request attribute), 114
prefix (falcon.asgi.Request attribute), 142
prefix (falcon.Request attribute), 115
prepare_middleware() (in module fal-

con.app_helpers), 255
prepare_middleware_ws() (in module fal-

con.app_helpers), 255
process() (falcon.inspect.InspectVisitor method), 262

Q
query_string (falcon.asgi.Request attribute), 142
query_string (falcon.Request attribute), 116

R
rand_string() (in module falcon.testing), 304
range (falcon.asgi.Request attribute), 144
range (falcon.Request attribute), 119
range_unit (falcon.asgi.Request attribute), 145
range_unit (falcon.Request attribute), 119
read() (falcon.asgi.BoundedStream method), 154
read() (falcon.stream.BoundedStream method), 128
read() (falcon.testing.ResultBodyStream method), 280
readable() (falcon.asgi.BoundedStream method), 154
readable() (falcon.stream.BoundedStream method),

128
readall() (falcon.asgi.BoundedStream method), 154

readline() (falcon.stream.BoundedStream method),
128

readlines() (falcon.stream.BoundedStream method),
128

ready (falcon.asgi.WebSocket attribute), 176
ready (falcon.testing.ASGIWebSocketSimulator at-

tribute), 280
receive_data() (falcon.asgi.WebSocket method),

177
receive_data() (fal-

con.testing.ASGIWebSocketSimulator method),
281

receive_json() (fal-
con.testing.ASGIWebSocketSimulator method),
281

receive_media() (falcon.asgi.WebSocket method),
177

receive_msgpack() (fal-
con.testing.ASGIWebSocketSimulator method),
281

receive_text() (falcon.asgi.WebSocket method),
177

receive_text() (fal-
con.testing.ASGIWebSocketSimulator method),
281

redirected() (in module falcon.testing), 304
referer (falcon.asgi.Request attribute), 143
referer (falcon.Request attribute), 117
register_router() (in module falcon.inspect), 259
relative_uri (falcon.asgi.Request attribute), 142
relative_uri (falcon.Request attribute), 115
remote_addr (falcon.asgi.Request attribute), 142
remote_addr (falcon.Request attribute), 116
render_body() (falcon.asgi.Response method), 162
render_body() (falcon.Response method), 134
req_options (falcon.App attribute), 99
req_options (falcon.asgi.App attribute), 106
Request (class in falcon), 113
Request (class in falcon.asgi), 139
RequestOptions (class in falcon), 110
resp_options (falcon.App attribute), 99
resp_options (falcon.asgi.App attribute), 106
Response (class in falcon), 129
Response (class in falcon.asgi), 155
ResponseOptions (class in falcon), 111
Result (class in falcon.testing), 278
ResultBodyStream (class in falcon.testing), 280
retry (falcon.asgi.SSEvent attribute), 168
retry_after() (falcon.asgi.Response property), 162
retry_after() (falcon.Response property), 134
root_path (falcon.asgi.Request attribute), 141
root_path (falcon.Request attribute), 115
RouteInfo (class in falcon.inspect), 260
RouteMethodInfo (class in falcon.inspect), 260

338 Index

Falcon Documentation, Release 3.0.1

router_options (falcon.App attribute), 99
router_options (falcon.asgi.App attribute), 106
runs_sync() (in module falcon), 270

S
schedule() (falcon.asgi.Response method), 162
schedule_sync() (falcon.asgi.Response method),

162
scheme (falcon.asgi.Request attribute), 140
scheme (falcon.Forwarded attribute), 127
scheme (falcon.Request attribute), 114
scope (falcon.asgi.Request attribute), 139
secure (falcon.testing.Cookie attribute), 282
secure_cookies_by_default (fal-

con.ResponseOptions attribute), 111
secure_filename (falcon.media.multipart.BodyPart

attribute), 230
secure_filename() (in module falcon), 271
seekable() (falcon.asgi.BoundedStream method), 155
seekable() (falcon.stream.BoundedStream method),

129
send_data() (falcon.asgi.WebSocket method), 177
send_data() (falcon.testing.ASGIWebSocketSimulator

method), 281
send_json() (falcon.testing.ASGIWebSocketSimulator

method), 281
send_media() (falcon.asgi.WebSocket method), 177
send_msgpack() (fal-

con.testing.ASGIWebSocketSimulator method),
281

send_text() (falcon.asgi.WebSocket method), 177
send_text() (falcon.testing.ASGIWebSocketSimulator

method), 281
serialize() (falcon.asgi.SSEvent method), 168
serialize() (falcon.media.BaseHandler method),

226
serialize() (falcon.media.BinaryBaseHandlerWS

method), 178
serialize() (falcon.media.TextBaseHandlerWS

method), 178
serialize_async() (falcon.media.BaseHandler

method), 226
set_cookie() (falcon.asgi.Response method), 163
set_cookie() (falcon.Response method), 135
set_default_responders() (in module fal-

con.routing), 254
set_error_serializer() (falcon.App method),

103
set_header() (falcon.asgi.Response method), 165
set_header() (falcon.Response method), 136
set_headers() (falcon.asgi.Response method), 165
set_headers() (falcon.Response method), 137
set_resp_defaults() (in module falcon.testing),

296

set_resp_defaults_async() (in module fal-
con.testing), 296

set_stream() (falcon.asgi.Response method), 166
set_stream() (falcon.Response method), 137
setUp() (falcon.testing.TestCase method), 303
SimpleTestResource (class in falcon.testing), 303
simulate_delete() (falcon.testing.ASGIConductor

method), 277
simulate_delete() (falcon.testing.TestClient

method), 275
simulate_delete() (in module falcon.testing), 292
simulate_get() (falcon.testing.ASGIConductor

method), 277
simulate_get() (falcon.testing.TestClient method),

275
simulate_get() (in module falcon.testing), 283
simulate_get_stream() (fal-

con.testing.ASGIConductor method), 277
simulate_head() (falcon.testing.ASGIConductor

method), 277
simulate_head() (falcon.testing.TestClient method),

275
simulate_head() (in module falcon.testing), 284
simulate_options() (fal-

con.testing.ASGIConductor method), 277
simulate_options() (falcon.testing.TestClient

method), 275
simulate_options() (in module falcon.testing),

289
simulate_patch() (falcon.testing.ASGIConductor

method), 278
simulate_patch() (falcon.testing.TestClient

method), 275
simulate_patch() (in module falcon.testing), 291
simulate_post() (falcon.testing.ASGIConductor

method), 278
simulate_post() (falcon.testing.TestClient method),

275
simulate_post() (in module falcon.testing), 286
simulate_put() (falcon.testing.ASGIConductor

method), 278
simulate_put() (falcon.testing.TestClient method),

275
simulate_put() (in module falcon.testing), 287
simulate_request() (fal-

con.testing.ASGIConductor method), 278
simulate_request() (falcon.testing.TestClient

method), 276
simulate_request() (in module falcon.testing),

294
simulate_ws() (falcon.testing.ASGIConductor

method), 278
SinkInfo (class in falcon.inspect), 262
src (falcon.Forwarded attribute), 127

Index 339

Falcon Documentation, Release 3.0.1

sse (falcon.asgi.Response attribute), 156
SSEvent (class in falcon.asgi), 167
StartResponseMock (class in falcon.testing), 297
static_media_types (falcon.ResponseOptions at-

tribute), 111
StaticRouteInfo (class in falcon.inspect), 262
status (falcon.asgi.Response attribute), 155
status (falcon.HTTPError attribute), 189
status (falcon.HTTPStatus attribute), 184
status (falcon.Response attribute), 129
status (falcon.testing.ASGIResponseEventCollector

attribute), 298
status (falcon.testing.Result attribute), 278
status (falcon.testing.StartResponseMock attribute),

297
status (falcon.testing.StreamedResult attribute), 279
status_code (falcon.testing.Result attribute), 278
status_code (falcon.testing.StreamedResult at-

tribute), 279
stream (falcon.asgi.Request attribute), 144
stream (falcon.asgi.Response attribute), 156
stream (falcon.media.multipart.BodyPart attribute),

230
stream (falcon.Request attribute), 118
stream (falcon.Response attribute), 130
stream (falcon.testing.StreamedResult attribute), 280
StreamedResult (class in falcon.testing), 279
StringVisitor (class in falcon.inspect), 262
strip_url_path_trailing_slash (fal-

con.RequestOptions attribute), 111
strong_compare() (falcon.ETag method), 273
subdomain (falcon.asgi.Request attribute), 141
subdomain (falcon.Request attribute), 115
subprotocol (falcon.testing.ASGIWebSocketSimulator

attribute), 281
subprotocols (falcon.asgi.WebSocket attribute), 176
suffix (falcon.inspect.RouteMethodInfo attribute), 261
supports_accept_headers (fal-

con.asgi.WebSocket attribute), 176
sync_to_async() (in module falcon), 268

T
tell() (falcon.asgi.BoundedStream method), 155
TestCase (class in falcon.testing), 302
TestClient (class in falcon.testing), 274
text (falcon.asgi.Response attribute), 155
text (falcon.asgi.SSEvent attribute), 167
text (falcon.HTTPStatus attribute), 184
text (falcon.media.multipart.BodyPart attribute), 231
text (falcon.Response attribute), 129
text (falcon.testing.Result attribute), 279
TextBaseHandlerWS (class in falcon.media), 178
TimezoneGMT (class in falcon), 266
title (falcon.HTTPError attribute), 189

to_dict() (falcon.HTTPError method), 190
to_json() (falcon.HTTPError method), 190
to_query_str() (in module falcon), 270
to_string() (falcon.inspect.AppInfo method), 260
to_xml() (falcon.HTTPError method), 190
tzname() (falcon.TimezoneGMT method), 266

U
unaccepted (falcon.asgi.WebSocket attribute), 176
unquote_string() (in module falcon.uri), 265
unset_cookie() (falcon.asgi.Response method), 166
unset_cookie() (falcon.Response method), 137
uri (falcon.asgi.Request attribute), 141
uri (falcon.Request attribute), 115
uri_template (falcon.asgi.Request attribute), 142
uri_template (falcon.Request attribute), 116
url (falcon.asgi.Request attribute), 142
url (falcon.Request attribute), 115
URLEncodedFormHandler (class in falcon.media),

226
user_agent (falcon.asgi.Request attribute), 143
user_agent (falcon.Request attribute), 117
utcoffset() (falcon.TimezoneGMT method), 266
UUIDConverter (class in falcon.routing), 250

V
validate() (in module fal-

con.media.validators.jsonschema), 221
value (falcon.testing.Cookie attribute), 282
vary() (falcon.asgi.Response property), 167
vary() (falcon.Response property), 138

W
wait_ready() (falcon.testing.ASGIWebSocketSimulator

method), 282
WebSocket (class in falcon.asgi), 176
WebSocketDisconnected (class in falcon), 180
WebSocketHandlerNotFound (class in falcon), 180
WebSocketOptions (class in falcon.asgi), 180
WebSocketPathNotFound (class in falcon), 180
WebSocketServerError (class in falcon), 180
wrap_sync_to_async() (in module falcon), 268
wrap_sync_to_async_unsafe() (in module fal-

con), 269
writable() (falcon.asgi.BoundedStream method), 155
writable() (falcon.stream.BoundedStream method),

129
write() (falcon.stream.BoundedStream method), 129
ws_options (falcon.asgi.App attribute), 106

340 Index

	What People are Saying
	Quick Links
	Features
	Who’s Using Falcon?
	Documentation
	User Guide
	Introduction
	Installation
	Quickstart
	Tutorial (WSGI)
	Tutorial (ASGI)
	Recipes
	FAQ

	Deployment Guide
	Preamble & Disclaimer
	Deploying Falcon on Linux with NGINX and uWSGI

	Community Guide
	Get Help
	Contribute to Falcon

	Framework Reference
	The App Class
	Request & Response
	WebSocket (ASGI Only)
	Cookies
	Status Codes
	Error Handling
	Media
	Multipart Forms
	Redirection
	Middleware
	CORS
	Hooks
	Routing
	Inspect Module
	Utilities
	Testing Helpers

	Changelogs
	Changelog for Falcon 3.0.1
	Changelog for Falcon 3.0.0
	Changelog for Falcon 2.0.0
	Changelog for Falcon 1.4.1
	Changelog for Falcon 1.4.0
	Changelog for Falcon 1.3.0
	Changelog for Falcon 1.2.0
	Changelog for Falcon 1.1.0
	Changelog for Falcon 1.0.0
	Changelog for Falcon 0.3.0
	Changelog for Falcon 0.2.0

	Python Module Index
	Index

