

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Falcon 1.0.0 documentation

The Falcon Web Framework

Release v1.0 (Installation)

Falcon is a minimalist WSGI library for building speedy web APIs and app
backends. We like to think of Falcon as the Dieter Rams of web frameworks.

When it comes to building HTTP APIs, other frameworks weigh you down with tons
of dependencies and unnecessary abstractions. Falcon cuts to the chase with a
clean design that embraces HTTP and the REST architectural style.

class CatalogItem(object):

 # ...

 @falcon.before(hooks.to_oid)
 def on_get(self, id):
 return self._collection.find_one(id)

app = falcon.API(after=[hooks.serialize])
app.add_route('/items/{id}', CatalogItem())

What People are Saying

“Falcon looks great so far. I hacked together a quick test for a
tiny server of mine and was ~40% faster with only 20 minutes of
work.”

“I’m loving #falconframework! Super clean and simple, I finally
have the speed and flexibility I need!”

“I feel like I’m just talking HTTP at last, with nothing in the
middle. Falcon seems like the requests of backend.”

“The source code for falcon is so good, I almost prefer it to
documentation. It basically can’t be wrong.”

“What other framework has integrated support for ‘786 TRY IT NOW’ ?”

Features

Falcon tries to do as little as possible while remaining highly effective.

	Routes based on URI templates RFC

	REST-inspired mapping of URIs to resources

	Global, resource, and method hooks

	Idiomatic HTTP error responses

	Full Unicode support

	Intuitive request and response objects

	Works great with async libraries like gevent

	Minimal attack surface for writing secure APIs

	100% code coverage with a comprehensive test suite

	Only depends on six and mimeparse

	Supports Python 2.6, 2.7, 3.3, 3.4 and 3.5

	Compatible with PyPy and Jython

Useful Links

	Falcon Home [http://falconframework.org/]

	Falcon @ PyPI [https://pypi.python.org/pypi/falcon]

	Falcon @ GitHub [https://github.com/racker/falcon]

Resources

	An Unladen Web Framework [http://blog.kgriffs.com/2013/07/02/python-fast-web-service-framework.html]

	The Definitive Introduction to Falcon [https://speakerdeck.com/cabrera/the-definitive-introduction-to-falcon]

Documentation

	Community Guide
	Get Help

	Contribute to Falcon

	FAQ

	User Guide
	Introduction

	Installation

	Quickstart

	Tutorial

	Classes and Functions
	API Class

	Req/Resp

	Cookies

	Status Codes

	Error Handling

	Redirection

	Middleware Components

	Hooks

	Routing

	Utilities

	Testing

	Changelogs
	1.0.0

	0.3.0

	0.2.0

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

Community Guide

	Get Help

	Contribute to Falcon

	FAQ

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Community Guide

Get Help

Welcome to the Falcon community! We are a pragmatic group of HTTP enthusiasts
working on the next generation of web apps and cloud services. We would love
to have you join us and share your ideas.

Please help us spread the word and grow the community!

IRC

While you experiment with Falcon and work to familiarize yourself with
the WSGI framework, please consider joining the #falconframework
IRC channel on
Freenode [https://en.wikipedia.org/wiki/Freenode]. It’s a great place to
ask questions, share ideas, and get the scoop on what’s new.

Mailing List

The Falcon community maintains a mailing list that you can use to share
your ideas and ask questions about the framework. We use the appropriately
minimalistic Librelist [http://librelist.com/] to host the discussions.

To join the mailing list, simply send your first email to falcon@librelist.com!
This will automatically subscribe you to the mailing list and sends your email
along to the rest of the subscribers. For more information about managing your
subscription, check out the
Librelist help page [http://librelist.com/help.html].

All contributors and maintainers of this project are subject to our Code
of Conduct [https://github.com/falconry/falcon/blob/master/CODEOFCONDUCT.md].
We expect everyone who participates on the mailing list to act
professionally, and lead by example in encouraging constructive
discussions. Each individual in the community is responsible for creating
a positive, constructive, and productive culture.

Discussions are archived [http://librelist.com/browser/falcon]
for posterity.

Submit Issues

If you have an idea for a feature, run into something that is harder to
use than it should be, or find a bug, please let the crew know
in #falconframework and/or by
submitting an issue [https://github.com/racker/falcon/issues]. We
need your help to make Falcon awesome!

Pay it Forward

We’d like to invite you to help other community members with their
questions in IRC, and to peer-review
pull requests [https://github.com/racker/falcon/pulls]. If you use the
Chrome browser, we recommend installing the
NotHub extension [http://nothub.org/] to stay up to date with PRs.

Code of Conduct

All contributors and maintainers of this project are subject to our Code
of Conduct [https://github.com/falconry/falcon/blob/master/CODEOFCONDUCT.md].

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Community Guide

Contribute to Falcon

Kurt Griffiths [http://kgriffs.com] is the creator and current
maintainer of the Falcon framework. He works with a growing team of
friendly and stylish volunteers like yourself, who review patches,
implement features, fix bugs, and write docs for the project.

Your ideas and patches are always welcome!

IRC

If you are interested in helping out, please join the #falconframework
IRC channel on Freenode [https://www.freenode.net/].
It’s the best way to discuss ideas, ask questions, and generally stay
in touch with fellow contributors. We recommend setting up a good
IRC bouncer, such as ZNC, which can record and play back any conversations
that happen when you are away.

Mailing List

The Falcon community maintains a mailing list that you can use to share
your ideas and ask questions about the framework. We use the appropriately
minimalistic Librelist [http://librelist.com/] to host the discussions.

To join the mailing list, simply send your first email to falcon@librelist.com!
This will automatically subscribe you to the mailing list and sends your email
along to the rest of the subscribers. For more information about managing your
subscription, check out the
Librelist help page [http://librelist.com/help.html].

All contributors and maintainers of this project are subject to our Code
of Conduct [https://github.com/falconry/falcon/blob/master/CODEOFCONDUCT.md].
We expect everyone who participates on the mailing list to act
professionally, and lead by example in encouraging constructive
discussions. Each individual in the community is responsible for creating
a positive, constructive, and productive culture.

Discussions are archived [http://librelist.com/browser/falcon]
for posterity.

Submit Issues

If you have an idea for a feature, run into something that is harder to
use than it should be, or find a bug, please let the crew know
in #falconframework and/or by
submitting an issue [https://github.com/racker/falcon/issues]. We
need your help to make Falcon awesome!

Pay it Forward

We’d like to invite you to help other community members with their
questions in IRC, and to peer-review
pull requests [https://github.com/racker/falcon/pulls]. If you use the
Chrome browser, we recommend installing the
NotHub extension [http://nothub.org/] to stay up to date with PRs.

Code of Conduct

All contributors and maintainers of this project are subject to our Code
of Conduct [https://github.com/falconry/falcon/blob/master/CODEOFCONDUCT.md].

Pull Requests

Before submitting a pull request, please ensure you have added new
tests and updated existing ones as appropriate. We require 100%
code coverage. Also, please ensure your coding style follows PEP 8 and
doesn’t make pyflakes sad.

Additional Style Rules

	Docstrings are required for classes, attributes, methods, and functions.

	Use napolean-flavored [http://sphinxcontrib-napoleon.readthedocs.org/en/latest/example_google.html#example-google-style-python-docstrings] docstrings to make them readable both when
using the help function within a REPL, and when browsing
them on Read the Docs.

	Format non-trivial comments using your GitHub nick and an appropriate
prefix. Here are some examples:

TODO(riker): Damage report!
NOTE(riker): Well, that's certainly good to know.
PERF(riker): Travel time to the nearest starbase?
APPSEC(riker): In all trust, there is the possibility for betrayal.

	Commit messages should be formatted using AngularJS conventions [http://goo.gl/QpbS7]
(one-liners are OK for now but bodies and footers may be required as the
project matures).

	When catching exceptions, name the variable ex.

	Use whitespace to separate logical blocks of code and to improve readability.

	Do not use single-character variable names except for trivial indexes when
looping, or in mathematical expressions implementing well-known formulae.

	Heavily document code that is especially complex or clever!

	When in doubt, optimize for readability.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Community Guide

FAQ

How do I use WSGI middleware with Falcon?

Instances of falcon.API are first-class WSGI apps, so you can use the
standard pattern outlined in PEP-3333. In your main “app” file, you would
simply wrap your api instance with a middleware app. For example:

import my_restful_service
import some_middleware

app = some_middleware.DoSomethingFancy(my_restful_service.api)

See also the WSGI middleware example [http://legacy.python.org/dev/peps/pep-3333/#middleware-components-that-play-both-sides] given in PEP-3333.

Why doesn’t Falcon come with batteries included?

The Python ecosystem offers a bunch of great libraries that you are welcome
to use from within your responders, hooks, and middleware components. Falcon
doesn’t try to dictate what you should use, since that would take away your
freedom to choose the best tool for the job.

How do I authenticate requests?

Hooks and middleware components can be used together to authenticate and
authorize requests. For example, a middleware component could be used to
parse incoming credentials and place the results in req.context.
Downstream components or hooks could then use this information to
authorize the request, taking into account the user’s role and the requested
resource.

Why doesn’t Falcon create a new Resource instance for every request?

Falcon generally tries to minimize the number of objects that it
instantiates. It does this for two reasons: first, to avoid the expense of
creating the object, and second to reduce memory usage. Therefore, when
adding a route, Falcon requires an instance of your resource class, rather
than the class type. That same instance will be used to serve all requests
coming in on that route.

Is Falcon thread-safe?

New Request and Response objects are created for each incoming HTTP request.
However, a single instance of each resource class attached to a route is
shared among all requests. Therefore, as long as you are careful about the
way responders access class member variables to avoid conflicts, your
WSGI app should be thread-safe.

That being said, Falcon-based services are usually deployed using green
threads (via the gevent library or similar) which aren’t truly running
concurrently, so there may be some edge cases where Falcon is not
thread-safe that haven’t been discovered yet.

Caveat emptor!

How do I implement both POSTing and GETing items for the same resource?

Suppose you wanted to implement the following endpoints:

Resource Collection
POST /resources
GET /resources{?marker, limit}

Resource Item
GET /resources/{id}
PATCH /resources/{id}
DELETE /resources/{id}

You can implement this sort of API by simply using two Python classes, one
to represent a single resource, and another to represent the collection of
said resources. It is common to place both classes in the same module.

The Falcon community did some experimenting with routing both singleton
and collection-based operations to the same Python class, but it turned
out to make routing definitions more complicated and less intuitive. That
being said, we are always open to new ideas, so please let us know if you
discover another way.

See also this section of the tutorial.

How can I pass data from a hook to a responder, and between hooks?

You can inject extra responder kwargs from a hook by adding them
to the params dict passed into the hook. You can also add custom data to
the req.context dict, as a way of passing contextual information around.

Does Falcon set Content-Length or do I need to do that explicitly?

Falcon will try to do this for you, based on the value of resp.body,
resp.data, or resp.stream_len (whichever is set in the response, checked
in that order.)

For dynamically-generated content, you can choose to leave off stream_len,
in which case Falcon will then leave off the Content-Length header, and
hopefully your WSGI server will do the Right Thing™ (assuming you’ve told
it to enable keep-alive).

Note

PEP-333 prohibits apps from setting hop-by-hop headers itself,
such as Transfer-Encoding.

I’m setting a response body, but it isn’t getting returned. What’s going on?

Falcon skips processing the response body when, according to the HTTP
spec, no body should be returned. If the client
sends a HEAD request, the framework will always return an empty body.
Falcon will also return an empty body whenever the response status is any
of the following:

falcon.HTTP_100
falcon.HTTP_204
falcon.HTTP_416
falcon.HTTP_304

If you have another case where you body isn’t being returned to the
client, it’s probably a bug! Let us know in IRC or on the mailing list so
we can help.

My app is setting a cookie, but it isn’t being passed back in subsequent requests.

By default, Falcon enables the secure cookie attribute. Therefore, if you are
testing your app over HTTP (instead of HTTPS), the client will not send the
cookie in subsequent requests. See also the cookie documentation

Why does raising an error inside a resource crash my app?

Generally speaking, Falcon assumes that resource responders (such as on_get,
on_post, etc.) will, for the most part, do the right thing. In other words,
Falcon doesn’t try very hard to protect responder code from itself.

This approach reduces the number of (often) extraneous checks that Falcon
would otherwise have to perform, making the framework more efficient. With
that in mind, writing a high-quality API based on Falcon requires that:

	Resource responders set response variables to sane values.

	Your code is well-tested, with high code coverage.

	Errors are anticipated, detected, and handled appropriately within
each responder and with the aid of custom error handlers.

Tip

Falcon will re-raise errors that do not inherit from
falcon.HTTPError unless you have registered a custom error
handler for that type (see also: falcon.API).

Why are trailing slashes trimmed from req.path?

Falcon normalizes incoming URI paths to simplify later processing and
improve the predictability of application logic. In addition to stripping
a trailing slashes, if any, Falcon will convert empty paths to “/”.

Note also that routing is also normalized, so adding a route for “/foo/bar”
also implicitly adds a route for “/foo/bar/”. Requests coming in for either
path will be sent to the same resource.

Why are field names in URI templates restricted to certain characters?

Field names are restricted to the ASCII characters in the set [a-zA-Z_].
Using a restricted set of characters allows the framework to make
simplifying assumptions that reduce the overhead of parsing incoming requests.

Why is my query parameter missing from the req object?

If a query param does not have a value, Falcon will by default ignore that
parameter. For example, passing ‘foo’ or ‘foo=’ will result in the parameter
being ignored.

If you would like to recognize such parameters, you must set the
keep_blank_qs_values request option to True. Request options are set
globally for each instance of falcon.API through the req_options
attribute. For example:

api.req_options.keep_blank_qs_values = True

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

User Guide

	Introduction
	How is Falcon different?

	About Apache 2.0

	Falcon License

	Installation
	PyPy

	CPython

	WSGI Server

	Source Code

	Quickstart
	The Big Picture

	Learning by Example

	More Features

	Tutorial
	The Big Picture

	First Steps

	Hosting Your App

	Creating Resources

	Request and Response Objects

	Serving Images

	Introducing Hooks

	Error Handling

	What Now?

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	User Guide

Introduction

Falcon is a minimalist, high-performance web framework for building RESTful services and app backends with Python. Falcon works with any WSGI container that is compliant with PEP-3333, and works great with Python 2.6, Python 2.7, Python 3.3, Python 3.4 and PyPy, giving you a wide variety of deployment options.

How is Falcon different?

First, Falcon is one of the fastest WSGI frameworks available. When there is a conflict between saving the developer a few keystrokes and saving a few microseconds to serve a request, Falcon is strongly biased toward the latter. That being said, Falcon strives to strike a good balance between usability and speed.

Second, Falcon is lean. It doesn’t try to be everything to everyone, focusing instead on a single use case: HTTP APIs. Falcon doesn’t include a template engine, form helpers, or an ORM (although those are easy enough to add yourself). When you sit down to write a web service with Falcon, you choose your own adventure in terms of async I/O, serialization, data access, etc. In fact, Falcon only has two dependencies: six [http://pythonhosted.org/six/], to make it easier to support both Python 2 and 3, and mimeparse [https://code.google.com/p/mimeparse/] for handling complex Accept headers. Neither of these packages pull in any further dependencies of their own.

Third, Falcon eschews magic. When you use the framework, it’s pretty obvious which inputs lead to which outputs. Also, it’s blatantly obvious where variables originate. All this makes it easier to reason about the code and to debug edge cases in large-scale deployments of your application.

About Apache 2.0

Falcon is released under the terms of the Apache 2.0 License [http://opensource.org/licenses/Apache-2.0]. This means that you can use it in your commercial applications without having to also open-source your own code. It also means that if someone happens to contribute code that is associated with a patent, you are granted a free license to use said patent. That’s a pretty sweet deal.

Now, if you do make changes to Falcon itself, please consider contributing your awesome work back to the community.

Falcon License

Copyright 2012-2016 by Rackspace Hosting, Inc. and other contributors,
as noted in the individual source code files.

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

By contributing to this project, you agree to also license your source
code under the terms of the Apache License, Version 2.0, as described
above.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	User Guide

Installation

PyPy

PyPy [http://pypy.org/] is the fastest way to run your Falcon app.
However, note that only the PyPy 2.7 compatible release is currently
supported.

$ pip install falcon

CPython

Falcon also fully supports
CPython [https://www.python.org/downloads/] 2.6-3.5.

A universal wheel is available on PyPI for the the Falcon framework.
Installing it is as simple as:

$ pip install falcon

Installing the wheel is a great way to get up and running with Falcon
quickly in a development environment, but for an extra speed boost when
deploying your application in production, Falcon can compile itself with
Cython.

The following commands tell pip to install Cython, and then to invoke
Falcon’s setup.py, which will in turn detect the presence of Cython
and then compile (AKA cythonize) the Falcon framework with the system’s
default C compiler.

$ pip install cython
$ pip install --no-binary :all: falcon

Installing on OS X

Xcode Command Line Tools are required to compile Cython. Install them
with this command:

$ xcode-select --install

The Clang compiler treats unrecognized command-line options as
errors; this can cause problems under Python 2.6, for example:

clang: error: unknown argument: '-mno-fused-madd' [-Wunused-command-line-argument-hard-error-in-future]

You might also see warnings about unused functions. You can work around
these issues by setting additional Clang C compiler flags as follows:

$ export CFLAGS="-Qunused-arguments -Wno-unused-function"

WSGI Server

Falcon speaks WSGI. If you want to actually serve a Falcon app, you will
want a good WSGI server. Gunicorn and uWSGI are some of the more popular
ones out there, but anything that can load a WSGI app will do. Gevent is
an async library that works well with both Gunicorn and uWSGI.

$ pip install gevent [gunicorn|uwsgi]

Source Code

Falcon lives on GitHub [https://github.com/racker/falcon], making the
code easy to browse, download, fork, etc. Pull requests are always welcome! Also,
please remember to star the project if it makes you happy.

Once you have cloned the repo or downloaded a tarball from GitHub, you
can install Falcon like this:

$ cd falcon
$ pip install .

Or, if you want to edit the code, first fork the main repo, clone the fork
to your desktop, and then run the following to install it using symbolic
linking, so that when you change your code, the changes will be automagically
available to your app without having to reinstall the package:

$ cd falcon
$ pip install -e .

Did we mention we love pull requests? :)

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	User Guide

Quickstart

If you haven’t done so already, please take a moment to
install the Falcon web framework before
continuing.

The Big Picture

[image: Falcon-based web application architecture]

Learning by Example

Here is a simple example from Falcon’s README, showing how to get
started writing an API:

things.py

Let's get this party started!
import falcon

Falcon follows the REST architectural style, meaning (among
other things) that you think in terms of resources and state
transitions, which map to HTTP verbs.
class ThingsResource(object):
 def on_get(self, req, resp):
 """Handles GET requests"""
 resp.status = falcon.HTTP_200 # This is the default status
 resp.body = ('\nTwo things awe me most, the starry sky '
 'above me and the moral law within me.\n'
 '\n'
 ' ~ Immanuel Kant\n\n')

falcon.API instances are callable WSGI apps
app = falcon.API()

Resources are represented by long-lived class instances
things = ThingsResource()

things will handle all requests to the '/things' URL path
app.add_route('/things', things)

You can run the above example using any WSGI server, such as uWSGI
or Gunicorn. For example:

$ pip install gunicorn
$ gunicorn things:app

Then, in another terminal:

$ curl localhost:8000/things

More Features

Here is a more involved example that demonstrates reading headers and query
parameters, handling errors, and working with request and response bodies.

import json
import logging
import uuid
from wsgiref import simple_server

import falcon
import requests

class StorageEngine(object):

 def get_things(self, marker, limit):
 return [{'id': str(uuid.uuid4()), 'color': 'green'}]

 def add_thing(self, thing):
 thing['id'] = str(uuid.uuid4())
 return thing

class StorageError(Exception):

 @staticmethod
 def handle(ex, req, resp, params):
 description = ('Sorry, couldn\'t write your thing to the '
 'database. It worked on my box.')

 raise falcon.HTTPError(falcon.HTTP_725,
 'Database Error',
 description)

class SinkAdapter(object):

 engines = {
 'ddg': 'https://duckduckgo.com',
 'y': 'https://search.yahoo.com/search',
 }

 def __call__(self, req, resp, engine):
 url = self.engines[engine]
 params = {'q': req.get_param('q', True)}
 result = requests.get(url, params=params)

 resp.status = str(result.status_code) + ' ' + result.reason
 resp.content_type = result.headers['content-type']
 resp.body = result.text

class AuthMiddleware(object):

 def process_request(self, req, resp):
 token = req.get_header('Authorization')
 account_id = req.get_header('Account-ID')

 challenges = ['Token type="Fernet"']

 if token is None:
 description = ('Please provide an auth token '
 'as part of the request.')

 raise falcon.HTTPUnauthorized('Auth token required',
 description,
 challenges,
 href='http://docs.example.com/auth')

 if not self._token_is_valid(token, account_id):
 description = ('The provided auth token is not valid. '
 'Please request a new token and try again.')

 raise falcon.HTTPUnauthorized('Authentication required',
 description,
 challenges,
 href='http://docs.example.com/auth')

 def _token_is_valid(self, token, account_id):
 return True # Suuuuuure it's valid...

class RequireJSON(object):

 def process_request(self, req, resp):
 if not req.client_accepts_json:
 raise falcon.HTTPNotAcceptable(
 'This API only supports responses encoded as JSON.',
 href='http://docs.examples.com/api/json')

 if req.method in ('POST', 'PUT'):
 if 'application/json' not in req.content_type:
 raise falcon.HTTPUnsupportedMediaType(
 'This API only supports requests encoded as JSON.',
 href='http://docs.examples.com/api/json')

class JSONTranslator(object):

 def process_request(self, req, resp):
 # req.stream corresponds to the WSGI wsgi.input environ variable,
 # and allows you to read bytes from the request body.
 #
 # See also: PEP 3333
 if req.content_length in (None, 0):
 # Nothing to do
 return

 body = req.stream.read()
 if not body:
 raise falcon.HTTPBadRequest('Empty request body',
 'A valid JSON document is required.')

 try:
 req.context['doc'] = json.loads(body.decode('utf-8'))

 except (ValueError, UnicodeDecodeError):
 raise falcon.HTTPError(falcon.HTTP_753,
 'Malformed JSON',
 'Could not decode the request body. The '
 'JSON was incorrect or not encoded as '
 'UTF-8.')

 def process_response(self, req, resp, resource):
 if 'result' not in req.context:
 return

 resp.body = json.dumps(req.context['result'])

def max_body(limit):

 def hook(req, resp, resource, params):
 length = req.content_length
 if length is not None and length > limit:
 msg = ('The size of the request is too large. The body must not '
 'exceed ' + str(limit) + ' bytes in length.')

 raise falcon.HTTPRequestEntityTooLarge(
 'Request body is too large', msg)

 return hook

class ThingsResource(object):

 def __init__(self, db):
 self.db = db
 self.logger = logging.getLogger('thingsapp.' + __name__)

 def on_get(self, req, resp, user_id):
 marker = req.get_param('marker') or ''
 limit = req.get_param_as_int('limit') or 50

 try:
 result = self.db.get_things(marker, limit)
 except Exception as ex:
 self.logger.error(ex)

 description = ('Aliens have attacked our base! We will '
 'be back as soon as we fight them off. '
 'We appreciate your patience.')

 raise falcon.HTTPServiceUnavailable(
 'Service Outage',
 description,
 30)

 # An alternative way of doing DRY serialization would be to
 # create a custom class that inherits from falcon.Request. This
 # class could, for example, have an additional 'doc' property
 # that would serialize to JSON under the covers.
 req.context['result'] = result

 resp.set_header('Powered-By', 'Falcon')
 resp.status = falcon.HTTP_200

 @falcon.before(max_body(64 * 1024))
 def on_post(self, req, resp, user_id):
 try:
 doc = req.context['doc']
 except KeyError:
 raise falcon.HTTPBadRequest(
 'Missing thing',
 'A thing must be submitted in the request body.')

 proper_thing = self.db.add_thing(doc)

 resp.status = falcon.HTTP_201
 resp.location = '/%s/things/%s' % (user_id, proper_thing['id'])

Configure your WSGI server to load "things.app" (app is a WSGI callable)
app = falcon.API(middleware=[
 AuthMiddleware(),
 RequireJSON(),
 JSONTranslator(),
])

db = StorageEngine()
things = ThingsResource(db)
app.add_route('/{user_id}/things', things)

If a responder ever raised an instance of StorageError, pass control to
the given handler.
app.add_error_handler(StorageError, StorageError.handle)

Proxy some things to another service; this example shows how you might
send parts of an API off to a legacy system that hasn't been upgraded
yet, or perhaps is a single cluster that all data centers have to share.
sink = SinkAdapter()
app.add_sink(sink, r'/search/(?P<engine>ddg|y)\Z')

Useful for debugging problems in your API; works with pdb.set_trace(). You
can also use Gunicorn to host your app. Gunicorn can be configured to
auto-restart workers when it detects a code change, and it also works
with pdb.
if __name__ == '__main__':
 httpd = simple_server.make_server('127.0.0.1', 8000, app)
 httpd.serve_forever()

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	User Guide

Tutorial

In this tutorial we’ll walk through building an API for a simple image sharing
service. Along the way, we’ll discuss Falcon’s major features and introduce
the terminology used by the framework.

The Big Picture

[image: Falcon-based web application architecture]

First Steps

Before continuing, be sure you’ve got Falcon installed. Then,
create a new project folder called “look” and cd into it:

$ mkdir look
$ cd look

Next, let’s create a new file that will be the entry point into your app:

$ touch app.py

Open that file in your favorite text editor and add the following lines:

import falcon

api = application = falcon.API()

That creates your WSGI application and aliases it as api. You can use any
variable names you like, but we’ll use application since that is what
Gunicorn expects it to be called, by default.

A WSGI application is just a callable with a well-defined signature so that
you can host the application with any web server that understands the WSGI
protocol [http://legacy.python.org/dev/peps/pep-3333/]. Let’s take a look
at the falcon.API class.

First, install IPython (if you don’t already have it), and fire it up:

$ pip install ipython
$ ipython

Now, type the following to introspect the falcon.API callable:

In [1]: import falcon

In [2]: falcon.API.__call__?

Alternatively, you can use the built-in help function:

In [3]: help(falcon.API.__call__)

Note the method signature. env and start_response are standard
WSGI params. Falcon adds a thin abstraction on top of these params
so you don’t have to interact with them directly.

The Falcon framework contains extensive inline documentation that you can
query using the above technique. The team has worked hard to optimize
the docstrings for readability, so that you can quickly scan them and find
what you need.

Tip

bpython [http://bpython-interpreter.org/] is another super-
powered REPL that is good to have in your toolbox when
exploring a new library.

Hosting Your App

Now that you have a simple Falcon app, you can take it for a spin with
a WSGI server. Python includes a reference server for self-hosting, but
let’s use something that you would actually deploy in production.

$ pip install gunicorn
$ gunicorn app

Now try querying it with curl:

$ curl localhost:8000 -v

You should get a 404. That’s actually OK, because we haven’t specified any
routes yet. Note that Falcon includes a default 404 response handler that
will fire for any requested path that doesn’t match any routes.

Curl is a bit of a pain to use, so let’s install
HTTPie [https://github.com/jkbr/httpie] and use it from now on.

$ pip install --upgrade httpie
$ http localhost:8000

Creating Resources

Falcon borrows some of its terminology from the REST architectural
style, so if you are familiar with that mindset, Falcon should be familiar.
On the other hand, if you have no idea what REST is, no worries; Falcon
was designed to be as intuitive as possible for anyone who understands
the basics of HTTP.

In Falcon, you map incoming requests to things called “Resources”. A
Resource is just a regular Python class that includes some methods that
follow a certain naming convention. Each of these methods corresponds to
an action that the API client can request be performed in order to fetch
or transform the resource in question.

Since we are building an image-sharing API, let’s create an “images”
resource. Create a new file, images.py within your project directory,
and add the following to it:

import falcon

class Resource(object):

 def on_get(self, req, resp):
 resp.body = '{"message": "Hello world!"}'
 resp.status = falcon.HTTP_200

As you can see, Resource is just a regular class. You can name the
class anything you like. Falcon uses duck-typing, so you don’t need to
inherit from any sort of special base class.

The image resource above defines a single method, on_get. For any
HTTP method you want your resource to support, simply add an on_x
class method to the resource, where x is any one of the standard
HTTP methods, lowercased (e.g., on_get, on_put, on_head, etc.).

We call these well-known methods “responders”. Each responder takes (at
least) two params, one representing the HTTP request, and one representing
the HTTP response to that request. By convention, these are called
req and resp, respectively. Route templates and hooks can inject extra
params, as we shall see later on.

Right now, the image resource responds to GET requests with a simple
200 OK and a JSON body. Falcon’s Internet media type defaults to
application/json but you can set it to whatever you like. For example,
you could use MessagePack [http://msgpack.org/], or any other
serialization format.

If you’d like to use MessagePack in the above example, you’ll need to
install the (de)serializer for Python running pip install msgpack-python
and then update your responder to set the response data and content_type
accordingly:

import falcon

import msgpack

class Resource(object):

 def on_get(self, req, resp):
 resp.data = msgpack.packb({'message': 'Hello world!'})
 resp.content_type = 'application/msgpack'
 resp.status = falcon.HTTP_200

Note the use of resp.data in lieu of resp.body. If you assign a
bytestring to the latter, Falcon will figure it out, but you can
get a little performance boost by assigning directly to resp.data.

OK, now let’s wire up this resource and see it in action. Go back to
app.py and modify it so it looks something like this:

import falcon

import images

api = application = falcon.API()

images = images.Resource()
api.add_route('/images', images)

Now, when a request comes in for “/images”, Falcon will call the
responder on the images resource that corresponds to the requested
HTTP method.

Restart gunicorn, and then try sending a GET request to the resource:

$ http GET localhost:8000/images

Request and Response Objects

Each responder in a resource receives a request object that can be used to
read the headers, query parameters, and body of the request. You can use
the help function mentioned earlier to list the Request class members:

In [1]: import falcon

In [2]: help(falcon.Request)

Each responder also receives a response object that can be used for setting
the status code, headers, and body of the response. You can list the
Response class members using the same technique used above:

In [3]: help(falcon.Response)

Let’s see how this works. When a client POSTs to our images collection, we
want to create a new image resource. First, we’ll need to specify where the
images will be saved (for a real service, you would want to use an object
storage service instead, such as Cloud Files or S3).

Edit your images.py file and add the following to the resource:

def __init__(self, storage_path):
 self.storage_path = storage_path

Then, edit app.py and pass in a path to the resource initializer.

Next, let’s implement the POST responder:

import os
import uuid
import mimetypes

import falcon

class Resource(object):

 def __init__(self, storage_path):
 self.storage_path = storage_path

 def on_post(self, req, resp):
 ext = mimetypes.guess_extension(req.content_type)
 filename = '{uuid}{ext}'.format(uuid=uuid.uuid4(), ext=ext)
 image_path = os.path.join(self.storage_path, filename)

 with open(image_path, 'wb') as image_file:
 while True:
 chunk = req.stream.read(4096)
 if not chunk:
 break

 image_file.write(chunk)

 resp.status = falcon.HTTP_201
 resp.location = '/images/' + filename

As you can see, we generate a unique ID and filename for the new image, and
then write it out by reading from req.stream. It’s called stream instead
of body to emphasize the fact that you are really reading from an input
stream; Falcon never spools or decodes request data, instead giving you direct
access to the incoming binary stream provided by the WSGI server.

Note that we are setting the
HTTP response status code [http://httpstatus.es] to “201 Created”. For a full list of
predefined status strings, simply call help on falcon.status_codes:

In [4]: help(falcon.status_codes)

The last line in the on_post responder sets the Location header for the
newly created resource. (We will create a route for that path in just a
minute.) Note that the Request and Response classes contain convenience
attributes for reading and setting common headers, but you can always
access any header by name with the req.get_header and resp.set_header
methods.

Restart gunicorn, and then try sending a POST request to the resource
(substituting test.jpg for a path to any JPEG you like.)

$ http POST localhost:8000/images Content-Type:image/jpeg < test.jpg

Now, if you check your storage directory, it should contain a copy of the
image you just POSTed.

Serving Images

Now that we have a way of getting images into the service, we need a way
to get them back out. What we want to do is return an image when it is
requested using the path that came back in the Location header, like so:

$ http GET localhost:8000/images/87db45ff42

Now, we could add an on_get responder to our images resource, and that is
fine for simple resources like this, but that approach can lead to problems
when you need to respond differently to the same HTTP method (e.g., GET),
depending on whether the user wants to interact with a collection
of things, or a single thing.

With that in mind, let’s create a separate class to represent a single image,
as opposed to a collection of images. We will then add an on_get responder
to the new class.

Go ahead and edit your images.py file to look something like this:

import os
import uuid
import mimetypes

import falcon

class Collection(object):

 def __init__(self, storage_path):
 self.storage_path = storage_path

 def on_post(self, req, resp):
 ext = mimetypes.guess_extension(req.content_type)
 filename = '{uuid}{ext}'.format(uuid=uuid.uuid4(), ext=ext)
 image_path = os.path.join(self.storage_path, filename)

 with open(image_path, 'wb') as image_file:
 while True:
 chunk = req.stream.read(4096)
 if not chunk:
 break

 image_file.write(chunk)

 resp.status = falcon.HTTP_201
 resp.location = '/images/' + filename

class Item(object):

 def __init__(self, storage_path):
 self.storage_path = storage_path

 def on_get(self, req, resp, name):
 resp.content_type = mimetypes.guess_type(name)[0]
 image_path = os.path.join(self.storage_path, name)
 resp.stream = open(image_path, 'rb')
 resp.stream_len = os.path.getsize(image_path)

As you can see, we renamed Resource to Collection and added a new Item
class to represent a single image resource. Also, note the name parameter
for the on_get responder. Any URI parameters that you specify in your routes
will be turned into corresponding kwargs and passed into the target responder as
such. We’ll see how to specify URI parameters in a moment.

Inside the on_get responder,
we set the Content-Type header based on the filename extension, and then
stream out the image directly from an open file handle. Note the use of
resp.stream_len. Whenever using resp.stream instead of resp.body or
resp.data, you have to also specify the expected length of the stream so
that the web client knows how much data to read from the response.

Note

If you do not know the size of the stream in advance, you can work around
that by using chunked encoding, but that’s beyond the scope of this
tutorial.

If resp.status is not set explicitly, it defaults to 200 OK, which is
exactly what we want the on_get responder to do.

Now, let’s wire things up and give this a try. Go ahead and edit app.py to
look something like this:

import falcon

import images

api = application = falcon.API()

storage_path = '/usr/local/var/look'

image_collection = images.Collection(storage_path)
image = images.Item(storage_path)

api.add_route('/images', image_collection)
api.add_route('/images/{name}', image)

As you can see, we specified a new route, /images/{name}. This causes
Falcon to expect all associated responders to accept a name
argument.

Note

Falcon also supports more complex parameterized path segments containing
multiple values. For example, a GH-like API could use the following
template to add a route for diffing two branches:

/repos/{org}/{repo}/compare/{usr0}:{branch0}...{usr1}:{branch1}

Now, restart gunicorn and post another picture to the service:

$ http POST localhost:8000/images Content-Type:image/jpeg < test.jpg

Make a note of the path returned in the Location header, and use it to
try GETing the image:

$ http localhost:8000/images/6daa465b7b.jpeg

HTTPie won’t download the image by default, but you can see that the response
headers were set correctly. Just for fun, go ahead and paste the above URI
into your web browser. The image should display correctly.

Introducing Hooks

At this point you should have a pretty good understanding of the basic parts
that make up a Falcon-based API. Before we finish up, let’s just take a few
minutes to clean up the code and add some error handling.

First of all, let’s check the incoming media type when something is posted
to make sure it is a common image type. We’ll do this by using a Falcon
before hook.

First, let’s define a list of media types our service will accept. Place this
constant near the top, just after the import statements in images.py:

ALLOWED_IMAGE_TYPES = (
 'image/gif',
 'image/jpeg',
 'image/png',
)

The idea here is to only accept GIF, JPEG, and PNG images. You can add others
to the list if you like.

Next, let’s create a hook that will run before each request to post a
message. Add this method below the definition of ALLOWED_IMAGE_TYPES:

def validate_image_type(req, resp, resource, params):
 if req.content_type not in ALLOWED_IMAGE_TYPES:
 msg = 'Image type not allowed. Must be PNG, JPEG, or GIF'
 raise falcon.HTTPBadRequest('Bad request', msg)

And then attach the hook to the on_post responder like so:

@falcon.before(validate_image_type)
def on_post(self, req, resp):

Now, before every call to that responder, Falcon will first invoke the
validate_image_type method. There isn’t anything special about that
method, other than it must accept four arguments. Every hook takes, as its
first two arguments, a reference to the same req and resp objects
that are passed into responders. resource argument is a Resource instance
associated with the request. The fourth argument, named params by
convention, is a reference to the kwarg dictionary Falcon creates for each
request. params will contain the route’s URI template params and their
values, if any.

As you can see in the example above, you can use req to get information
about the incoming request. However, you can also use resp to play with
the HTTP response as needed, and you can even inject extra kwargs for
responders in a DRY way, e.g.,:

def extract_project_id(req, resp, resource, params):
 """Adds `project_id` to the list of params for all responders.

 Meant to be used as a `before` hook.
 """
 params['project_id'] = req.get_header('X-PROJECT-ID')

Now, you can imagine that such a hook should apply to all responders for
a resource. You can apply hooks to an entire resource like so:

@falcon.before(extract_project_id)
class Message(object):

 # ...

Similar logic can be applied globally with middleware.
(See falcon.middleware)

To learn more about hooks, take a look at the docstring for the API class,
as well the docstrings for the falcon.before and falcon.after decorators.

Now that you’ve added a hook to validate the media type when an image is
POSTed, you can see it in action by passing in something nefarious:

$ http POST localhost:8000/images Content-Type:image/jpx < test.jpx

That should return a 400 Bad Request status and a nicely structured
error body. When something goes wrong, you usually want to give your users
some info to help them resolve the issue. The exception to this rule is when
an error occurs because the user is requested something they are not
authorized to access. In that case, you may wish to simply return
404 Not Found with an empty body, in case a malicious user is fishing
for information that will help them crack your API.

Error Handling

Generally speaking, Falcon assumes that resource responders (on_get,
on_post, etc.) will, for the most part, do the right thing. In other words,
Falcon doesn’t try very hard to protect responder code from itself.

This approach reduces the number of (often) extraneous checks that Falcon
would otherwise have to perform, making the framework more efficient. With
that in mind, writing a high-quality API based on Falcon requires that:

	Resource responders set response variables to sane values.

	Your code is well-tested, with high code coverage.

	Errors are anticipated, detected, and handled appropriately within each
responder.

Tip

Falcon will re-raise errors that do not inherit from falcon.HTTPError
unless you have registered a custom error handler for that type
(see also: falcon.API).

Speaking of error handling, when something goes horribly (or mildly) wrong,
you could manually set the error status, appropriate response headers, and
even an error body using the resp object. However, Falcon tries to make
things a bit easier by providing a set of exceptions you can raise when
something goes wrong. In fact, if Falcon catches any exception your responder
throws that inherits from falcon.HTTPError, the framework will convert
that exception to an appropriate HTTP error response.

You may raise an instance of falcon.HTTPError, or use any one
of a number of predefined error classes that try to do “the right thing” in
setting appropriate headers and bodies. Have a look at the docs for
any of the following to get more information on how you can use them in your
API:

falcon.HTTPBadGateway
falcon.HTTPBadRequest
falcon.HTTPConflict
falcon.HTTPError
falcon.HTTPForbidden
falcon.HTTPInternalServerError
falcon.HTTPLengthRequired
falcon.HTTPMethodNotAllowed
falcon.HTTPNotAcceptable
falcon.HTTPNotFound
falcon.HTTPPreconditionFailed
falcon.HTTPRangeNotSatisfiable
falcon.HTTPServiceUnavailable
falcon.HTTPUnauthorized
falcon.HTTPUnsupportedMediaType
falcon.HTTPUpgradeRequired

For example, you could handle a missing image file like this:

try:
 resp.stream = open(image_path, 'rb')
except IOError:
 raise falcon.HTTPNotFound()

Or you could handle a bogus filename like this:

VALID_IMAGE_NAME = re.compile(r'[a-f0-9]{10}\.(jpeg|gif|png)$')

...

class Item(object):

 def __init__(self, storage_path):
 self.storage_path = storage_path

 def on_get(self, req, resp, name):
 if not VALID_IMAGE_NAME.match(name):
 raise falcon.HTTPNotFound()

Sometimes you don’t have much control over the type of exceptions that get
raised. To address this, Falcon lets you create custom handlers for any type
of error. For example, if your database throws exceptions that inherit from
NiftyDBError, you can install a special error handler just for NiftyDBError,
so you don’t have to copy-paste your handler code across multiple responders.

Have a look at the docstring for falcon.API.add_error_handler for more
information on using this feature to DRY up your code:

In [71]: help(falcon.API.add_error_handler)

What Now?

Our friendly community is available to answer your questions and help you
work through sticky problems. See also: Getting Help.

As mentioned previously, Falcon’s docstrings are quite extensive, and so you
can learn a lot just by poking around Falcon’s modules from a Python REPL,
such as IPython [http://ipython.org/] or
bpython [http://bpython-interpreter.org/].

Also, don’t be shy about pulling up Falcon’s source code on GitHub or in your
favorite text editor. The team has tried to make the code as straightforward
and readable as possible; where other documentation may fall short, the code basically
“can’t be wrong.”

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

Classes and Functions

	API Class

	Req/Resp
	Request

	Response

	Cookies
	Getting Cookies

	Setting Cookies

	The Secure Attribute

	Status Codes
	HTTPStatus

	1xx Informational

	2xx Success

	3xx Redirection

	4xx Client Error

	5xx Server Error

	Error Handling
	Base Class

	Mixins

	Predefined Errors

	Redirection
	Base Class

	Redirects

	Middleware Components

	Hooks

	Routing

	Utilities
	URI Functions

	Miscellaneous

	Testing
	Deprecated

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Classes and Functions

API Class

Falcon’s API class is a WSGI “application” that you can host with any
standard-compliant WSGI server.

import falcon

api = application = falcon.API()

	
class falcon.API(media_type='application/json; charset=UTF-8', request_type=<class 'falcon.request.Request'>, response_type=<class 'falcon.response.Response'>, middleware=None, router=None)[source]

	This class is the main entry point into a Falcon-based app.

Each API instance provides a callable WSGI interface and a routing engine.

	Parameters:	
	media_type (str, optional) – Default media type to use as the value for
the Content-Type header on responses (default ‘application/json’).

	middleware (object or list, optional) – One or more objects
(instantiated classes) that implement the following middleware
component interface:

class ExampleComponent(object):
 def process_request(self, req, resp):
 """Process the request before routing it.

 Args:
 req: Request object that will eventually be
 routed to an on_* responder method.
 resp: Response object that will be routed to
 the on_* responder.
 """

 def process_resource(self, req, resp, resource, params):
 """Process the request and resource *after* routing.

 Note:
 This method is only called when the request matches
 a route to a resource.

 Args:
 req: Request object that will be passed to the
 routed responder.
 resp: Response object that will be passed to the
 responder.
 resource: Resource object to which the request was
 routed. May be None if no route was found for
 the request.
 params: A dict-like object representing any
 additional params derived from the route's URI
 template fields, that will be passed to the
 resource's responder method as keyword
 arguments.
 """

 def process_response(self, req, resp, resource)
 """Post-processing of the response (after routing).

 Args:
 req: Request object.
 resp: Response object.
 resource: Resource object to which the request was
 routed. May be None if no route was found
 for the request.
 """

See also Middleware.

	request_type (Request, optional) – Request-like class to use instead
of Falcon’s default class. Among other things, this feature
affords inheriting from falcon.request.Request in order
to override the context_type class variable.
(default falcon.request.Request)

	response_type (Response, optional) – Response-like class to use
instead of Falcon’s default class. (default
falcon.response.Response)

	router (object, optional) – An instance of a custom router
to use in lieu of the default engine.
See also: Routing.

	
req_options

	RequestOptions – A set of behavioral options related to
incoming requests.

	
add_error_handler(exception, handler=None)[source]

	Registers a handler for a given exception error type.

	Parameters:	
	exception (type [http://docs.python.org/library/functions.html#type]) – Whenever an error occurs when handling a request
that is an instance of this exception class, the associated
handler will be called.

	handler (callable [http://docs.python.org/library/functions.html#callable]) – A function or callable object taking the form
func(ex, req, resp, params).

If not specified explicitly, the handler will default to
exception.handle, where exception is the error
type specified above, and handle is a static method
(i.e., decorated with @staticmethod) that accepts
the same params just described. For example:

class CustomException(CustomBaseException):

 @staticmethod
 def handle(ex, req, resp, params):
 # TODO: Log the error
 # Convert to an instance of falcon.HTTPError
 raise falcon.HTTPError(falcon.HTTP_792)

Note

A handler can either raise an instance of HTTPError
or modify resp manually in order to communicate
information about the issue to the client.

	
add_route(uri_template, resource, *args, **kwargs)[source]

	Associates a templatized URI path with a resource.

A resource is an instance of a class that defines various
“responder” methods, one for each HTTP method the resource
allows. Responder names start with on_ and are named according to
which HTTP method they handle, as in on_get, on_post, on_put,
etc.

If your resource does not support a particular
HTTP method, simply omit the corresponding responder and
Falcon will reply with “405 Method not allowed” if that
method is ever requested.

Responders must always define at least two arguments to receive
request and response objects, respectively. For example:

def on_post(self, req, resp):
 pass

In addition, if the route’s template contains field
expressions, any responder that desires to receive requests
for that route must accept arguments named after the respective
field names defined in the template. A field expression consists
of a bracketed field name.

For example, given the following template:

/user/{name}

A PUT request to “/user/kgriffs” would be routed to:

def on_put(self, req, resp, name):
 pass

Individual path segments may contain one or more field expressions.
For example:

/repos/{org}/{repo}/compare/{usr0}:{branch0}...{usr1}:{branch1}

	Parameters:	
	uri_template (str [http://docs.python.org/library/functions.html#str]) – A templatized URI. Care must be
taken to ensure the template does not mask any sink
patterns, if any are registered (see also add_sink).

	resource (instance) – Object which represents a REST
resource. Falcon will pass “GET” requests to on_get,
“PUT” requests to on_put, etc. If any HTTP methods are not
supported by your resource, simply don’t define the
corresponding request handlers, and Falcon will do the right
thing.

Note

Any additional args and kwargs not defined above are passed
through to the underlying router’s add_route() method. The
default router does not expect any additional arguments, but
custom routers may take advantage of this feature to receive
additional options when setting up routes.

	
add_sink(sink, prefix='/')[source]

	Registers a sink method for the API.

If no route matches a request, but the path in the requested URI
matches a sink prefix, Falcon will pass control to the
associated sink, regardless of the HTTP method requested.

Using sinks, you can drain and dynamically handle a large number
of routes, when creating static resources and responders would be
impractical. For example, you might use a sink to create a smart
proxy that forwards requests to one or more backend services.

	Parameters:	
	sink (callable [http://docs.python.org/library/functions.html#callable]) – A callable taking the form func(req, resp).

	prefix (str [http://docs.python.org/library/functions.html#str]) – A regex string, typically starting with ‘/’, which
will trigger the sink if it matches the path portion of the
request’s URI. Both strings and precompiled regex objects
may be specified. Characters are matched starting at the
beginning of the URI path.

Note

Named groups are converted to kwargs and passed to
the sink as such.

Warning

If the prefix overlaps a registered route template,
the route will take precedence and mask the sink
(see also add_route).

	
set_error_serializer(serializer)[source]

	Override the default serializer for instances of HTTPError.

When a responder raises an instance of HTTPError, Falcon converts
it to an HTTP response automatically. The default serializer
supports JSON and XML, but may be overridden by this method to
use a custom serializer in order to support other media types.

The falcon.HTTPError class contains helper methods, such as
to_json() and to_dict(), that can be used from within
custom serializers. For example:

def my_serializer(req, resp, exception):
 representation = None

 preferred = req.client_prefers(('application/x-yaml',
 'application/json'))

 if preferred is not None:
 if preferred == 'application/json':
 representation = exception.to_json()
 else:
 representation = yaml.dump(exception.to_dict(),
 encoding=None)
 resp.body = representation
 resp.content_type = preferred

Note

If a custom media type is used and the type includes a
“+json” or “+xml” suffix, the default serializer will
convert the error to JSON or XML, respectively. If this
is not desirable, a custom error serializer may be used
to override this behavior.

	Parameters:	serializer (callable [http://docs.python.org/library/functions.html#callable]) – A function taking the form
func(req, resp, exception), where req is the request
object that was passed to the responder method, resp is
the response object, and exception is an instance of
falcon.HTTPError.

	
class falcon.RequestOptions[source]

	This class is a container for Request options.

	
keep_blank_qs_values

	bool – Set to True in order to retain
blank values in query string parameters (default False).

	
auto_parse_form_urlencoded

	Set to True in order to
automatically consume the request stream and merge the
results into the request’s query string params when the
request’s content type is
application/x-www-form-urlencoded (default False). In
this case, the request’s content stream will be left at EOF.

Note

The character encoding for fields, before
percent-encoding non-ASCII bytes, is assumed to be
UTF-8. The special _charset_ field is ignored if present.

Falcon expects form-encoded request bodies to be
encoded according to the standard W3C algorithm (see
also http://goo.gl/6rlcux).

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Classes and Functions

Req/Resp

Instances of the Request and Response classes are passed into responders as the second
and third arguments, respectively.

import falcon

class Resource(object):

 def on_get(self, req, resp):
 resp.body = '{"message": "Hello world!"}'
 resp.status = falcon.HTTP_200

Request

	
class falcon.Request(env, options=None)[source]

	Represents a client’s HTTP request.

Note

Request is not meant to be instantiated directly by responders.

	Parameters:	
	env (dict [http://docs.python.org/library/stdtypes.html#dict]) – A WSGI environment dict passed in from the server. See
also PEP-3333.

	options (dict [http://docs.python.org/library/stdtypes.html#dict]) – Set of global options passed from the API handler.

	
protocol

	str – Either ‘http’ or ‘https’.

	
method

	str – HTTP method requested (e.g., ‘GET’, ‘POST’, etc.)

	
host

	str – Hostname requested by the client

	
subdomain

	str – Leftmost (i.e., most specific) subdomain from the
hostname. If only a single domain name is given, subdomain
will be None.

Note

If the hostname in the request is an IP address, the value
for subdomain is undefined.

	
env

	dict – Reference to the WSGI environ dict passed in from the
server. See also PEP-3333.

	
app

	str – Name of the WSGI app (if using WSGI’s notion of virtual
hosting).

	
access_route

	list – IP address of the original client, as well
as any known addresses of proxies fronting the WSGI server.

The following request headers are checked, in order of
preference, to determine the addresses:

	Forwarded

	X-Forwarded-For

	X-Real-IP

If none of these headers are available, the value of
remote_addr is used instead.

Note

Per RFC 7239 [https://tools.ietf.org/html/rfc7239], the access route may contain “unknown”
and obfuscated identifiers, in addition to IPv4 and
IPv6 addresses

Warning

Headers can be forged by any client or proxy. Use this
property with caution and validate all values before
using them. Do not rely on the access route to authorize
requests.

	
remote_addr

	str – IP address of the closest client or proxy to
the WSGI server.

This property is determined by the value of REMOTE_ADDR
in the WSGI environment dict. Since this address is not
derived from an HTTP header, clients and proxies can not
forge it.

Note

If your application is behind one or more reverse
proxies, you can use access_route
to retrieve the real IP address of the client.

	
context

	dict – Dictionary to hold any data about the request which is
specific to your app (e.g. session object). Falcon itself will
not interact with this attribute after it has been initialized.

	
context_type

	class – Class variable that determines the
factory or type to use for initializing the
context attribute. By default, the framework will
instantiate standard
dict objects. However, You may override this behavior
by creating a custom child class of falcon.Request, and
then passing that new class to falcon.API() by way of the
latter’s request_type parameter.

Note

When overriding context_type with a factory function (as
opposed to a class), the function is called like a method of
the current Request instance. Therefore the first argument is
the Request instance itself (self).

	
uri

	str – The fully-qualified URI for the request.

	
url

	str – alias for uri.

	
relative_uri

	str – The path + query string portion of the full URI.

	
path

	str – Path portion of the request URL (not including query
string).

	
query_string

	str – Query string portion of the request URL, without
the preceding ‘?’ character.

	
user_agent

	str – Value of the User-Agent header, or None if the
header is missing.

	
accept

	str – Value of the Accept header, or ‘/‘ if the header is
missing.

	
auth

	str – Value of the Authorization header, or None if the
header is missing.

	
client_accepts_json

	bool – True if the Accept header indicates
that the client is willing to receive JSON, otherwise False.

	
client_accepts_msgpack

	bool – True if the Accept header indicates
that the client is willing to receive MessagePack, otherwise
False.

	
client_accepts_xml

	bool – True if the Accept header indicates that
the client is willing to receive XML, otherwise False.

	
content_type

	str – Value of the Content-Type header, or None if
the header is missing.

	
content_length

	int – Value of the Content-Length header converted
to an int, or None if the header is missing.

	
stream

	File-like object for reading the body of the request, if any.

Note

If an HTML form is POSTed to the API using the
application/x-www-form-urlencoded media type, and
the auto_parse_form_urlencoded
option is set, the framework
will consume stream in order to parse the parameters
and merge them into the query string parameters. In this
case, the stream will be left at EOF.

	
date

	datetime – Value of the Date header, converted to a
datetime instance. The header value is assumed to
conform to RFC 1123.

	
expect

	str – Value of the Expect header, or None if the
header is missing.

	
range

	tuple of int – A 2-member tuple parsed from the value of the
Range header.

The two members correspond to the first and last byte
positions of the requested resource, inclusive. Negative
indices indicate offset from the end of the resource,
where -1 is the last byte, -2 is the second-to-last byte,
and so forth.

Only continous ranges are supported (e.g., “bytes=0-0,-1” would
result in an HTTPBadRequest exception when the attribute is
accessed.)

	
range_unit

	str – Unit of the range parsed from the value of the
Range header, or None if the header is missing

	
if_match

	str – Value of the If-Match header, or None if the
header is missing.

	
if_none_match

	str – Value of the If-None-Match header, or None
if the header is missing.

	
if_modified_since

	datetime – Value of the If-Modified-Since header,
or None if the header is missing.

	
if_unmodified_since

	datetime – Value of the If-Unmodified-Since
header, or None if the header is missing.

	
if_range

	str – Value of the If-Range header, or None if the
header is missing.

	
headers

	dict – Raw HTTP headers from the request with
canonical dash-separated names. Parsing all the headers
to create this dict is done the first time this attribute
is accessed. This parsing can be costly, so unless you
need all the headers in this format, you should use the
get_header method or one of the convenience attributes
instead, to get a value for a specific header.

	
params

	dict – The mapping of request query parameter names to their
values. Where the parameter appears multiple times in the query
string, the value mapped to that parameter key will be a list of
all the values in the order seen.

	
options

	dict – Set of global options passed from the API handler.

	
cookies

	dict – A dict of name/value cookie pairs.
See also: Getting Cookies

	
client_accepts(media_type)[source]

	Determines whether or not the client accepts a given media type.

	Parameters:	media_type (str [http://docs.python.org/library/functions.html#str]) – An Internet media type to check.

	Returns:	
	True if the client has indicated in the Accept header

	that it accepts the specified media type. Otherwise, returns
False.

	Return type:	bool [http://docs.python.org/library/functions.html#bool]

	
client_prefers(media_types)[source]

	Returns the client’s preferred media type, given several choices.

	Parameters:	media_types (iterable of str) – One or more Internet media types
from which to choose the client’s preferred type. This value
must be an iterable collection of strings.

	Returns:	
	The client’s preferred media type, based on the Accept

	header. Returns None if the client does not accept any
of the given types.

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
get_header(name, required=False)[source]

	Retrieve the raw string value for the given header.

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – Header name, case-insensitive (e.g., ‘Content-Type’)

	required (bool, optional) – Set to True to raise
HTTPBadRequest instead of returning gracefully when the
header is not found (default False).

	Returns:	
	The value of the specified header if it exists, or None if

	the header is not found and is not required.

	Return type:	str [http://docs.python.org/library/functions.html#str]

	Raises:	HTTPBadRequest – The header was not found in the request, but
it was required.

	
get_header_as_datetime(header, required=False, obs_date=False)[source]

	Return an HTTP header with HTTP-Date values as a datetime.

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – Header name, case-insensitive (e.g., ‘Date’)

	required (bool, optional) – Set to True to raise
HTTPBadRequest instead of returning gracefully when the
header is not found (default False).

	obs_date (bool, optional) – Support obs-date formats according to
RFC 7231, e.g.: “Sunday, 06-Nov-94 08:49:37 GMT”
(default False).

	Returns:	
	The value of the specified header if it exists,

	or None if the header is not found and is not required.

	Return type:	datetime [http://docs.python.org/library/datetime.html#module-datetime]

	Raises:	
	HTTPBadRequest – The header was not found in the request, but
it was required.

	HttpInvalidHeader – The header contained a malformed/invalid value.

	
get_param(name, required=False, store=None, default=None)[source]

	Return the raw value of a query string parameter as a string.

Note

If an HTML form is POSTed to the API using the
application/x-www-form-urlencoded media type, the
parameters from the request body will be merged into
the query string parameters.

If a key appears more than once in the form data, one of the
values will be returned as a string, but it is undefined which
one. Use req.get_param_as_list() to retrieve all the values.

Note

Similar to the way multiple keys in form data is handled,
if a query parameter is assigned a comma-separated list of
values (e.g., ‘foo=a,b,c’), only one of those values will be
returned, and it is undefined which one. Use
req.get_param_as_list() to retrieve all the values.

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – Parameter name, case-sensitive (e.g., ‘sort’).

	required (bool, optional) – Set to True to raise
HTTPBadRequest instead of returning None when the
parameter is not found (default False).

	store (dict, optional) – A dict-like object in which to place
the value of the param, but only if the param is present.

	default (any, optional) – If the param is not found returns the
given value instead of None

	Returns:	
	The value of the param as a string, or None if param is

	not found and is not required.

	Return type:	str [http://docs.python.org/library/functions.html#str]

	Raises:	HTTPBadRequest – A required param is missing from the request.

	
get_param_as_bool(name, required=False, store=None, blank_as_true=False)[source]

	Return the value of a query string parameter as a boolean

The following boolean strings are supported:

TRUE_STRINGS = ('true', 'True', 'yes', '1')
FALSE_STRINGS = ('false', 'False', 'no', '0')

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – Parameter name, case-sensitive (e.g., ‘detailed’).

	required (bool, optional) – Set to True to raise
HTTPBadRequest instead of returning None when the
parameter is not found or is not a recognized boolean
string (default False).

	store (dict, optional) – A dict-like object in which to place
the value of the param, but only if the param is found (default
None).

	blank_as_true (bool [http://docs.python.org/library/functions.html#bool]) – If True, an empty string value will be
treated as True. Normally empty strings are ignored; if
you would like to recognize such parameters, you must set the
keep_blank_qs_values request option to True. Request
options are set globally for each instance of falcon.API
through the req_options attribute.

	Returns:	
	The value of the param if it is found and can be converted

	to a bool. If the param is not found, returns None
unless required is True.

	Return type:	bool [http://docs.python.org/library/functions.html#bool]

	Raises:	HTTPBadRequest – A required param is missing from the request.

	
get_param_as_date(name, format_string='%Y-%m-%d', required=False, store=None)[source]

	Return the value of a query string parameter as a date.

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – Parameter name, case-sensitive (e.g., ‘ids’).

	format_string (str [http://docs.python.org/library/functions.html#str]) – String used to parse the param value into a
date.
Any format recognized by strptime() is supported.
(default "%Y-%m-%d")

	required (bool, optional) – Set to True to raise
HTTPBadRequest instead of returning None when the
parameter is not found (default False).

	store (dict, optional) – A dict-like object in which to place
the value of the param, but only if the param is found (default
None).

	Returns:	
	The value of the param if it is found and can be

	converted to a date according to the supplied format
string. If the param is not found, returns None unless
required is True.

	Return type:	datetime.date [http://docs.python.org/library/datetime.html#datetime.date]

	Raises:	
	HTTPBadRequest – A required param is missing from the request.

	HTTPInvalidParam – A transform function raised an instance of
ValueError.

	
get_param_as_int(name, required=False, min=None, max=None, store=None)[source]

	Return the value of a query string parameter as an int.

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – Parameter name, case-sensitive (e.g., ‘limit’).

	required (bool, optional) – Set to True to raise
HTTPBadRequest instead of returning None when the
parameter is not found or is not an integer (default
False).

	min (int, optional) – Set to the minimum value allowed for this
param. If the param is found and it is less than min, an
HTTPError is raised.

	max (int, optional) – Set to the maximum value allowed for this
param. If the param is found and its value is greater than
max, an HTTPError is raised.

	store (dict, optional) – A dict-like object in which to place
the value of the param, but only if the param is found
(default None).

	Returns:	
	The value of the param if it is found and can be converted to

	an integer. If the param is not found, returns None, unless
required is True.

	Return type:	int [http://docs.python.org/library/functions.html#int]

	Raises

	
	HTTPBadRequest: The param was not found in the request, even though

	it was required to be there. Also raised if the param’s value
falls outside the given interval, i.e., the value must be in
the interval: min <= value <= max to avoid triggering an error.

	
get_param_as_list(name, transform=None, required=False, store=None)[source]

	Return the value of a query string parameter as a list.

List items must be comma-separated or must be provided
as multiple instances of the same param in the query string
ala application/x-www-form-urlencoded.

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – Parameter name, case-sensitive (e.g., ‘ids’).

	transform (callable, optional) – An optional transform function
that takes as input each element in the list as a str and
outputs a transformed element for inclusion in the list that
will be returned. For example, passing int will
transform list items into numbers.

	required (bool, optional) – Set to True to raise
HTTPBadRequest instead of returning None when the
parameter is not found (default False).

	store (dict, optional) – A dict-like object in which to place
the value of the param, but only if the param is found (default
None).

	Returns:	
	The value of the param if it is found. Otherwise, returns

	None unless required is True. Empty list elements will be
discarded. For example, the following query strings would
both result in [‘1’, ‘3’]:

things=1,,3
things=1&things=&things=3

	Return type:	list [http://docs.python.org/library/functions.html#list]

	Raises:	
	HTTPBadRequest – A required param is missing from the request.

	HTTPInvalidParam – A transform function raised an instance of
ValueError.

	
log_error(message)[source]

	Write an error message to the server’s log.

Prepends timestamp and request info to message, and writes the
result out to the WSGI server’s error stream (wsgi.error).

	Parameters:	message (str or unicode) – Description of the problem. On Python 2,
instances of unicode will be converted to UTF-8.

Response

	
class falcon.Response[source]

	Represents an HTTP response to a client request.

Note

Response is not meant to be instantiated directly by responders.

	
status

	str – HTTP status line (e.g., ‘200 OK’). Falcon requires the
full status line, not just the code (e.g., 200). This design
makes the framework more efficient because it does not have to
do any kind of conversion or lookup when composing the WSGI
response.

If not set explicitly, the status defaults to ‘200 OK’.

Note

Falcon provides a number of constants for common status
codes. They all start with the HTTP_ prefix, as in:
falcon.HTTP_204.

	
body

	str or unicode – String representing response content. If
Unicode, Falcon will encode as UTF-8 in the response. If
data is already a byte string, use the data attribute
instead (it’s faster).

	
data

	bytes – Byte string representing response content.

Use this attribute in lieu of body when your content is
already a byte string (str or bytes in Python 2, or
simply bytes in Python 3). See also the note below.

Note

Under Python 2.x, if your content is of type str, using
the data attribute instead of body is the most
efficient approach. However, if
your text is of type unicode, you will need to use the
body attribute instead.

Under Python 3.x, on the other hand, the 2.x str type can
be thought of as
having been replaced by what was once the unicode type,
and so you will need to always use the body attribute for
strings to
ensure Unicode characters are properly encoded in the
HTTP response.

	
stream

	Either a file-like object with a read() method that takes
an optional size argument and returns a block of bytes, or an
iterable object, representing response content, and yielding
blocks as byte strings. Falcon will use wsgi.file_wrapper, if
provided by the WSGI server, in order to efficiently serve
file-like objects.

	
stream_len

	int – Expected length of stream. If stream is set,
but stream_len is not, Falcon will not supply a
Content-Length header to the WSGI server. Consequently, the
server may choose to use chunked encoding or one of the
other strategies suggested by PEP-3333.

	
add_link(target, rel, title=None, title_star=None, anchor=None, hreflang=None, type_hint=None)[source]

	Add a link header to the response.

See also: https://tools.ietf.org/html/rfc5988

Note

Calling this method repeatedly will cause each link to be
appended to the Link header value, separated by commas.

Note

So-called “link-extension” elements, as defined by RFC 5988,
are not yet supported. See also Issue #288.

	Parameters:	
	target (str [http://docs.python.org/library/functions.html#str]) – Target IRI for the resource identified by the
link. Will be converted to a URI, if necessary, per
RFC 3987, Section 3.1.

	rel (str [http://docs.python.org/library/functions.html#str]) – Relation type of the link, such as “next” or
“bookmark”. See also http://goo.gl/618GHr for a list
of registered link relation types.

	Kwargs:

	
	title (str): Human-readable label for the destination of

	the link (default None). If the title includes non-ASCII
characters, you will need to use title_star instead, or
provide both a US-ASCII version using title and a
Unicode version using title_star.

	title_star (tuple of str): Localized title describing the

	destination of the link (default None). The value must be a
two-member tuple in the form of (language-tag, text),
where language-tag is a standard language identifier as
defined in RFC 5646, Section 2.1, and text is a Unicode
string.

	Note:

	language-tag may be an empty string, in which case the
client will assume the language from the general context
of the current request.

	Note:

	text will always be encoded as UTF-8. If the string
contains non-ASCII characters, it should be passed as
a unicode type string (requires the ‘u’ prefix in
Python 2).

	anchor (str): Override the context IRI with a different URI

	(default None). By default, the context IRI for the link is
simply the IRI of the requested resource. The value
provided may be a relative URI.

	hreflang (str or iterable): Either a single language-tag, or

	a list or tuple of such tags to provide a hint to the
client as to the language of the result of following the link.
A list of tags may be given in order to indicate to the
client that the target resource is available in multiple
languages.

	type_hint(str): Provides a hint as to the media type of the

	result of dereferencing the link (default None). As noted
in RFC 5988, this is only a hint and does not override the
Content-Type header returned when the link is followed.

	
append_header(name, value)[source]

	Set or append a header for this response.

Warning

If the header already exists, the new value will be appended
to it, delimited by a comma. Most header specifications support
this format, Set-Cookie being the notable exceptions.

Warning

For setting cookies, see set_cookie()

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – Header name (case-insensitive). The restrictions
noted below for the header’s value also apply here.

	value (str [http://docs.python.org/library/functions.html#str]) – Value for the header. Must be of type str or
StringType and contain only ISO-8859-1 characters.
Under Python 2.x, the unicode type is also accepted,
although such strings are also limited to ISO-8859-1.

	
cache_control

	Sets the Cache-Control header.

Used to set a list of cache directives to use as the value of the
Cache-Control header. The list will be joined with ”, ” to produce
the value for the header.

	
content_location

	Sets the Content-Location header.

	
content_range

	A tuple to use in constructing a value for the Content-Range header.

The tuple has the form (start, end, length, [unit]), where start and
end designate the range (inclusive), and length is the
total length, or ‘*’ if unknown. You may pass int‘s for
these numbers (no need to convert to str beforehand). The optional value
unit describes the range unit and defaults to ‘bytes’

Note

You only need to use the alternate form, ‘bytes */1234’, for
responses that use the status ‘416 Range Not Satisfiable’. In this
case, raising falcon.HTTPRangeNotSatisfiable will do the right
thing.

See also: http://goo.gl/Iglhp

	
content_type

	Sets the Content-Type header.

	
etag

	Sets the ETag header.

	
get_header(name)[source]

	Retrieve the raw string value for the given header.

	Parameters:	name (str [http://docs.python.org/library/functions.html#str]) – Header name, case-insensitive. Must be of type str
or StringType, and only character values 0x00 through 0xFF
may be used on platforms that use wide characters.

	Returns:	The header’s value if set, otherwise None.

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
last_modified

	Sets the Last-Modified header. Set to a datetime (UTC) instance.

Note

Falcon will format the datetime as an HTTP date string.

	
location

	Sets the Location header.

	
retry_after

	Sets the Retry-After header.

The expected value is an integral number of seconds to use as the
value for the header. The HTTP-date syntax is not supported.

	
set_cookie(name, value, expires=None, max_age=None, domain=None, path=None, secure=True, http_only=True)[source]

	Set a response cookie.

Note

This method can be called multiple times to add one or
more cookies to the response.

See also

To learn more about setting cookies, see
Setting Cookies. The parameters listed
below correspond to those defined in RFC 6265 [http://tools.ietf.org/html/rfc6265].

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – Cookie name

	value (str [http://docs.python.org/library/functions.html#str]) – Cookie value

	expires (datetime [http://docs.python.org/library/datetime.html#module-datetime]) – Specifies when the cookie should expire. By
default, cookies expire when the user agent exits.

	max_age (int [http://docs.python.org/library/functions.html#int]) – Defines the lifetime of the cookie in seconds.
After the specified number of seconds elapse, the client
should discard the cookie. Coercion to int is attempted
if provided with float or str.

	domain (str [http://docs.python.org/library/functions.html#str]) – Specifies the domain for which the cookie is valid.
An explicitly specified domain must always start with a dot.
A value of 0 means the cookie should be discarded immediately.

	path (str [http://docs.python.org/library/functions.html#str]) – Specifies the subset of URLs to
which this cookie applies.

	secure (bool [http://docs.python.org/library/functions.html#bool]) – Direct the client to only return the cookie in
subsequent requests if they are made over HTTPS
(default: True). This prevents attackers from reading
sensitive cookie data. Note that for the secure cookie
attribute to be effective, your application will need to
enforce HTTPS. See also: RFC 6265, Section 4.1.2.5 [https://tools.ietf.org/html/rfc6265#section-4.1.2.5].

	http_only (bool [http://docs.python.org/library/functions.html#bool]) – Direct the client to only transfer the cookie
with unscripted HTTP requests (default: True). This is
intended to mitigate some forms of cross-site scripting.

	Raises:	
	KeyError – name is not a valid cookie name.

	ValueError – value is not a valid cookie value.

	
set_header(name, value)[source]

	Set a header for this response to a given value.

Warning

Calling this method overwrites the existing value, if any.

Warning

For setting cookies, see instead set_cookie()

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – Header name (case-insensitive). The restrictions
noted below for the header’s value also apply here.

	value (str [http://docs.python.org/library/functions.html#str]) – Value for the header. Must be of type str or
StringType and contain only ISO-8859-1 characters.
Under Python 2.x, the unicode type is also accepted,
although such strings are also limited to ISO-8859-1.

	
set_headers(headers)[source]

	Set several headers at once.

Warning

Calling this method overwrites existing values, if any.

	Parameters:	headers (dict or list) – A dictionary of header names and values
to set, or a list of (name, value) tuples. Both name
and value must be of type str or StringType and
contain only ISO-8859-1 characters. Under Python 2.x, the
unicode type is also accepted, although such strings are
also limited to ISO-8859-1.

Note

Falcon can process a list of tuples slightly faster
than a dict.

	Raises:	ValueError – headers was not a dict or list of tuple.

	
set_stream(stream, stream_len)[source]

	Convenience method for setting both stream and stream_len.

Although the stream and stream_len properties may be set
directly, using this method ensures stream_len is not
accidentally neglected when the length of the stream is known in
advance.

Note

If the stream length is unknown, you can set stream
directly, and ignore stream_len. In this case, the
WSGI server may choose to use chunked encoding or one
of the other strategies suggested by PEP-3333.

	
unset_cookie(name)[source]

	Unset a cookie in the response

Note

This will clear the contents of the cookie, and instruct
the browser to immediately expire its own copy of the
cookie, if any.

	
vary

	Value to use for the Vary header.

Set this property to an iterable of header names. For a single
asterisk or field value, simply pass a single-element list or
tuple.

“Tells downstream proxies how to match future request headers
to decide whether the cached response can be used rather than
requesting a fresh one from the origin server.”

(Wikipedia)

See also: http://goo.gl/NGHdL

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Classes and Functions

Cookies

Cookie support is available in Falcon version 0.3 or later.

Getting Cookies

Cookies can be read from a request via the cookies
request attribute:

class Resource(object):
 def on_get(self, req, resp):

 cookies = req.cookies

 if 'my_cookie' in cookies:
 my_cookie_value = cookies['my_cookie']
 #

The cookies attribute is a regular
dict [http://docs.python.org/library/stdtypes.html#dict] object.

Tip

The cookies attribute returns a
copy of the response cookie dictionary. Assign it to a variable, as
shown in the above example, to improve performance when you need to
look up more than one cookie.

Setting Cookies

Setting cookies on a response is done via set_cookie().

The set_cookie() method should be used instead of
set_header() or append_header().
With set_header() you cannot set multiple headers
with the same name (which is how multiple cookies are sent to the client).
Furthermore, append_header() appends multiple values
to the same header field in a way that is not compatible with the special
format required by the Set-Cookie header.

Simple example:

class Resource(object):
 def on_get(self, req, resp):

 # Set the cookie 'my_cookie' to the value 'my cookie value'
 resp.set_cookie('my_cookie', 'my cookie value')

You can of course also set the domain, path and lifetime of the cookie.

class Resource(object):
 def on_get(self, req, resp):
 # Set the maximum age of the cookie to 10 minutes (600 seconds)
 # and the cookie's domain to 'example.com'
 resp.set_cookie('my_cookie', 'my cookie value',
 max_age=600, domain='example.com')

You can also instruct the client to remove a cookie with the
unset_cookie() method:

class Resource(object):
 def on_get(self, req, resp):
 resp.set_cookie('bad_cookie', ':(')

 # Clear the bad cookie
 resp.unset_cookie('bad_cookie')

The Secure Attribute

By default, Falcon sets the secure attribute for cookies. This
instructs the client to never transmit the cookie in the clear over
HTTP, in order to protect any sensitive data that cookie might
contain. If a cookie is set, and a subsequent request is made over
HTTP (rather than HTTPS), the client will not include that cookie in
the request.

Warning

For this attribute to be effective, your application will need to
enforce HTTPS when setting the cookie, as well as in all
subsequent requests that require the cookie to be sent back from
the client.

When running your application in a development environment, you can
disable this behavior by passing secure=False to
set_cookie(). This lets you test your app locally
without having to set up TLS. You can make this option configurable to
easily switch between development and production environments.

See also: RFC 6265, Section 4.1.2.5 [https://tools.ietf.org/html/rfc6265#section-4.1.2.5]

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Classes and Functions

Status Codes

Falcon provides a list of constants for common
HTTP response status codes [http://httpstatus.es].

For example:

Override the default "200 OK" response status
resp.status = falcon.HTTP_409

Or, using the more verbose name:

resp.status = falcon.HTTP_CONFLICT

Using these constants helps avoid typos and cuts down on the number of
string objects that must be created when preparing responses.

Falcon also provides a generic HTTPStatus class. Raise this class from a hook,
middleware, or a responder to stop handling the request and skip to the response
handling. It takes status, additional headers and body as input arguments.

HTTPStatus

	
class falcon.HTTPStatus(status, headers=None, body=None)[source]

	Represents a generic HTTP status.

Raise an instance of this class from a hook, middleware, or
responder to short-circuit request processing in a manner similar
to falcon.HTTPError, but for non-error status codes.

	
status

	str – HTTP status line, e.g. ‘748 Confounded by Ponies’.

	
headers

	dict – Extra headers to add to the response.

	
body

	str or unicode – String representing response content. If
Unicode, Falcon will encode as UTF-8 in the response.

	Parameters:	
	status (str [http://docs.python.org/library/functions.html#str]) – HTTP status code and text, such as
‘748 Confounded by Ponies’.

	headers (dict [http://docs.python.org/library/stdtypes.html#dict]) – Extra headers to add to the response.

	body (str or unicode) – String representing response content. If
Unicode, Falcon will encode as UTF-8 in the response.

1xx Informational

HTTP_CONTINUE = HTTP_100
HTTP_SWITCHING_PROTOCOLS = HTTP_101

HTTP_100 = '100 Continue'
HTTP_101 = '101 Switching Protocols'

2xx Success

HTTP_OK = HTTP_200
HTTP_CREATED = HTTP_201

HTTP_200 = '200 OK'
HTTP_201 = '201 Created'
HTTP_202 = '202 Accepted'
HTTP_203 = '203 Non-Authoritative Information'
HTTP_204 = '204 No Content'
HTTP_205 = '205 Reset Content'
HTTP_206 = '206 Partial Content'
HTTP_226 = '226 IM Used'

3xx Redirection

HTTP_MULTIPLE_CHOICES = HTTP_300
HTTP_MOVED_PERMANENTLY = HTTP_301
HTTP_FOUND = HTTP_302
HTTP_SEE_OTHER = HTTP_303
HTTP_NOT_MODIFIED = HTTP_304
HTTP_USE_PROXY = HTTP_305
HTTP_TEMPORARY_REDIRECT = HTTP_307

HTTP_300 = '300 Multiple Choices'
HTTP_301 = '301 Moved Permanently'
HTTP_302 = '302 Found'
HTTP_303 = '303 See Other'
HTTP_304 = '304 Not Modified'
HTTP_305 = '305 Use Proxy'
HTTP_307 = '307 Temporary Redirect'

4xx Client Error

HTTP_BAD_REQUEST = HTTP_400
HTTP_UNAUTHORIZED = HTTP_401 # <-- Really means "unauthenticated"
HTTP_PAYMENT_REQUIRED = HTTP_402
HTTP_FORBIDDEN = HTTP_403 # <-- Really means "unauthorized"
HTTP_NOT_FOUND = HTTP_404
HTTP_METHOD_NOT_ALLOWED = HTTP_405
HTTP_NOT_ACCEPTABLE = HTTP_406
HTTP_PROXY_AUTHENTICATION_REQUIRED = HTTP_407
HTTP_REQUEST_TIMEOUT = HTTP_408
HTTP_CONFLICT = HTTP_409
HTTP_GONE = HTTP_410
HTTP_LENGTH_REQUIRED = HTTP_411
HTTP_PRECONDITION_FAILED = HTTP_412
HTTP_REQUEST_ENTITY_TOO_LARGE = HTTP_413
HTTP_REQUEST_URI_TOO_LONG = HTTP_414
HTTP_UNSUPPORTED_MEDIA_TYPE = HTTP_415
HTTP_REQUESTED_RANGE_NOT_SATISFIABLE = HTTP_416
HTTP_EXPECTATION_FAILED = HTTP_417
HTTP_IM_A_TEAPOT = HTTP_418
HTTP_UNPROCESSABLE_ENTITY = HTTP_422
HTTP_UPGRADE_REQUIRED = HTTP_426
HTTP_PRECONDITION_REQUIRED = HTTP_428
HTTP_TOO_MANY_REQUESTS = HTTP_429
HTTP_REQUEST_HEADER_FIELDS_TOO_LARGE = HTTP_431
HTTP_UNAVAILABLE_FOR_LEGAL_REASONS = HTTP_451

HTTP_400 = '400 Bad Request'
HTTP_401 = '401 Unauthorized' # <-- Really means "unauthenticated"
HTTP_402 = '402 Payment Required'
HTTP_403 = '403 Forbidden' # <-- Really means "unauthorized"
HTTP_404 = '404 Not Found'
HTTP_405 = '405 Method Not Allowed'
HTTP_406 = '406 Not Acceptable'
HTTP_407 = '407 Proxy Authentication Required'
HTTP_408 = '408 Request Time-out'
HTTP_409 = '409 Conflict'
HTTP_410 = '410 Gone'
HTTP_411 = '411 Length Required'
HTTP_412 = '412 Precondition Failed'
HTTP_413 = '413 Payload Too Large'
HTTP_414 = '414 URI Too Long'
HTTP_415 = '415 Unsupported Media Type'
HTTP_416 = '416 Range Not Satisfiable'
HTTP_417 = '417 Expectation Failed'
HTTP_418 = "418 I'm a teapot"
HTTP_422 = "422 Unprocessable Entity"
HTTP_426 = '426 Upgrade Required'
HTTP_428 = '428 Precondition Required'
HTTP_429 = '429 Too Many Requests'
HTTP_431 = '431 Request Header Fields Too Large'
HTTP_451 = '451 Unavailable For Legal Reasons'

5xx Server Error

HTTP_INTERNAL_SERVER_ERROR = HTTP_500
HTTP_NOT_IMPLEMENTED = HTTP_501
HTTP_BAD_GATEWAY = HTTP_502
HTTP_SERVICE_UNAVAILABLE = HTTP_503
HTTP_GATEWAY_TIMEOUT = HTTP_504
HTTP_HTTP_VERSION_NOT_SUPPORTED = HTTP_505
HTTP_NETWORK_AUTHENTICATION_REQUIRED = HTTP_511

HTTP_500 = '500 Internal Server Error'
HTTP_501 = '501 Not Implemented'
HTTP_502 = '502 Bad Gateway'
HTTP_503 = '503 Service Unavailable'
HTTP_504 = '504 Gateway Time-out'
HTTP_505 = '505 HTTP Version not supported'
HTTP_511 = '511 Network Authentication Required'

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Classes and Functions

Error Handling

When a request results in an error condition, you could manually set the
error status, appropriate response headers, and even an error body using the
resp object. However, Falcon tries to make things a bit easier and more
consistent by providing a set of error classes you can raise from within
your app. Falcon catches any exception that inherits from
falcon.HTTPError, and automatically converts it to an appropriate HTTP
response.

You may raise an instance of falcon.HTTPError directly, or use any one
of a number of predefined error classes that try to be idiomatic in
setting appropriate headers and bodies.

Base Class

	
class falcon.HTTPError(status, title=None, description=None, headers=None, href=None, href_text=None, code=None)[source]

	Represents a generic HTTP error.

Raise this or a child class to have Falcon automagically return pretty
error responses (with an appropriate HTTP status code) to the client
when something goes wrong.

	
status

	str – HTTP status line, e.g. ‘748 Confounded by Ponies’.

	
has_representation

	bool – Read-only property that determines
whether error details will be serialized when composing
the HTTP response. In HTTPError this property always
returns True, but child classes may override it
in order to return False when an empty HTTP body is desired.
See also the falcon.http_error.NoRepresentation mixin.

	
title

	str – Error title to send to the client. Will be None if
the error should result in an HTTP response with an empty body.

	
description

	str – Description of the error to send to the client.

	
headers

	dict – Extra headers to add to the response.

	
link

	str – An href that the client can provide to the user for
getting help.

	
code

	int – An internal application code that a user can reference when
requesting support for the error.

	Parameters:	status (str [http://docs.python.org/library/functions.html#str]) – HTTP status code and text, such as “400 Bad Request”

	Keyword Arguments:

		
	title (str) – Human-friendly error title (default None).

	description (str) – Human-friendly description of the error, along with
a helpful suggestion or two (default None).

	headers (dict or list) – A dict of header names and values
to set, or a list of (name, value) tuples. Both name and
value must be of type str or StringType, and only
character values 0x00 through 0xFF may be used on platforms that
use wide characters.

Note

The Content-Type header, if present, will be overridden. If
you wish to return custom error messages, you can create
your own HTTP error class, and install an error handler
to convert it into an appropriate HTTP response for the
client

Note

Falcon can process a list of tuple slightly faster
than a dict.

	headers (dict) – Extra headers to return in the
response to the client (default None).

	href (str) – A URL someone can visit to find out more information
(default None). Unicode characters are percent-encoded.

	href_text (str) – If href is given, use this as the friendly
title/description for the link (defaults to “API documentation
for this error”).

	code (int) – An internal code that customers can reference in their
support request or to help them when searching for knowledge
base articles related to this error (default None).

	
to_dict(obj_type=<type 'dict'>)[source]

	Returns a basic dictionary representing the error.

This method can be useful when serializing the error to hash-like
media types, such as YAML, JSON, and MessagePack.

	Parameters:	obj_type – A dict-like type that will be used to store the
error information (default dict).

	Returns:	A dictionary populated with the error’s title, description, etc.

	
to_json()[source]

	Returns a pretty-printed JSON representation of the error.

	Returns:	A JSON document for the error.

	
to_xml()[source]

	Returns an XML-encoded representation of the error.

	Returns:	An XML document for the error.

Mixins

	
class falcon.http_error.NoRepresentation[source]

	Mixin for HTTPError child classes that have no representation.

This class can be mixed in when inheriting from HTTPError, in order
to override the has_representation property such that it always
returns False. This, in turn, will cause Falcon to return an empty
response body to the client.

You can use this mixin when defining errors that either should not have
a body (as dictated by HTTP standards or common practice), or in the
case that a detailed error response may leak information to an attacker.

Note

This mixin class must appear before HTTPError in the base class
list when defining the child; otherwise, it will not override the
has_representation property as expected.

Predefined Errors

	
exception falcon.HTTPInvalidHeader(msg, header_name, **kwargs)[source]

	A header in the request is invalid. Inherits from HTTPBadRequest.

	Parameters:	
	msg (str [http://docs.python.org/library/functions.html#str]) – A description of why the value is invalid.

	header_name (str [http://docs.python.org/library/functions.html#str]) – The name of the header.

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPMissingHeader(header_name, **kwargs)[source]

	A header is missing from the request. Inherits from HTTPBadRequest.

	Parameters:	
	header_name (str [http://docs.python.org/library/functions.html#str]) – The name of the header.

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPInvalidParam(msg, param_name, **kwargs)[source]

	A parameter in the request is invalid. Inherits from HTTPBadRequest.

This error may refer to a parameter in a query string, form, or
document that was submitted with the request.

	Parameters:	
	msg (str [http://docs.python.org/library/functions.html#str]) – A description of the invalid parameter.

	param_name (str [http://docs.python.org/library/functions.html#str]) – The name of the parameter.

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPMissingParam(param_name, **kwargs)[source]

	A parameter is missing from the request. Inherits from HTTPBadRequest.

This error may refer to a parameter in a query string, form, or
document that was submitted with the request.

	Parameters:	
	param_name (str [http://docs.python.org/library/functions.html#str]) – The name of the parameter.

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPBadRequest(title, description, **kwargs)[source]

	400 Bad Request.

The request could not be understood by the server due to malformed
syntax. The client SHOULD NOT repeat the request without
modifications. (RFC 2616)

	Parameters:	
	title (str [http://docs.python.org/library/functions.html#str]) – Error title (e.g., ‘TTL Out of Range’).

	description (str [http://docs.python.org/library/functions.html#str]) – Human-friendly description of the error, along with
a helpful suggestion or two.

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPUnauthorized(title, description, challenges, **kwargs)[source]

	401 Unauthorized.

Use when authentication is required, and the provided credentials are
not valid, or no credentials were provided in the first place.

	Parameters:	
	title (str [http://docs.python.org/library/functions.html#str]) – Error title (e.g., ‘Authentication Required’).

	description (str [http://docs.python.org/library/functions.html#str]) – Human-friendly description of the error, along with
a helpful suggestion or two.

	challenges (iterable of str) – One or more authentication
challenges to use as the value of the WWW-Authenticate header in
the response. See also:
http://tools.ietf.org/html/rfc7235#section-2.1

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPForbidden(title, description, **kwargs)[source]

	403 Forbidden.

Use when the client’s credentials are good, but they do not have permission
to access the requested resource.

If the request method was not HEAD and the server wishes to make
public why the request has not been fulfilled, it SHOULD describe the
reason for the refusal in the entity. If the server does not wish to
make this information available to the client, the status code 404
(Not Found) can be used instead. (RFC 2616)

	Parameters:	
	title (str [http://docs.python.org/library/functions.html#str]) – Error title (e.g., ‘Permission Denied’).

	description (str [http://docs.python.org/library/functions.html#str]) – Human-friendly description of the error, along with
a helpful suggestion or two.

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPNotFound(**kwargs)[source]

	404 Not Found.

Use this when the URL path does not map to an existing resource, or you
do not wish to disclose exactly why a request was refused.

	
exception falcon.HTTPMethodNotAllowed(allowed_methods, **kwargs)[source]

	405 Method Not Allowed.

The method specified in the Request-Line is not allowed for the
resource identified by the Request-URI. The response MUST include an
Allow header containing a list of valid methods for the requested
resource. (RFC 2616)

	Parameters:	allowed_methods (list of str) – Allowed HTTP methods for this
resource (e.g., ['GET', 'POST', 'HEAD']).

	
exception falcon.HTTPNotAcceptable(description, **kwargs)[source]

	406 Not Acceptable.

The client requested a resource in a representation that is not
supported by the server. The client must indicate a supported
media type in the Accept header.

The resource identified by the request is only capable of generating
response entities which have content characteristics not acceptable
according to the accept headers sent in the request. (RFC 2616)

	Parameters:	
	description (str [http://docs.python.org/library/functions.html#str]) – Human-friendly description of the error, along with
a helpful suggestion or two.

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPConflict(title, description, **kwargs)[source]

	409 Conflict.

The request could not be completed due to a conflict with the current
state of the resource. This code is only allowed in situations where
it is expected that the user might be able to resolve the conflict
and resubmit the request. The response body SHOULD include enough
information for the user to recognize the source of the conflict.
Ideally, the response entity would include enough information for the
user or user agent to fix the problem; however, that might not be
possible and is not required.

Conflicts are most likely to occur in response to a PUT request. For
example, if versioning were being used and the entity being PUT
included changes to a resource which conflict with those made by an
earlier (third-party) request, the server might use the 409 response
to indicate that it can’t complete the request. In this case, the
response entity would likely contain a list of the differences
between the two versions in a format defined by the response
Content-Type.

(RFC 2616)

	Parameters:	
	title (str [http://docs.python.org/library/functions.html#str]) – Error title (e.g., ‘Editing Conflict’).

	description (str [http://docs.python.org/library/functions.html#str]) – Human-friendly description of the error, along with
a helpful suggestion or two.

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPLengthRequired(title, description, **kwargs)[source]

	411 Length Required.

The server refuses to accept the request without a defined
Content-Length. The client MAY repeat the request if it adds a
valid Content-Length header field containing the length of the
message-body in the request message. (RFC 2616)

	Parameters:	
	title (str [http://docs.python.org/library/functions.html#str]) – Error title (e.g., ‘Missing Content-Length’).

	description (str [http://docs.python.org/library/functions.html#str]) – Human-friendly description of the error, along with
a helpful suggestion or two.

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPPreconditionFailed(title, description, **kwargs)[source]

	412 Precondition Failed.

The precondition given in one or more of the request-header fields
evaluated to false when it was tested on the server. This response
code allows the client to place preconditions on the current resource
metainformation (header field data) and thus prevent the requested
method from being applied to a resource other than the one intended.
(RFC 2616)

	Parameters:	
	title (str [http://docs.python.org/library/functions.html#str]) – Error title (e.g., ‘Image Not Modified’).

	description (str [http://docs.python.org/library/functions.html#str]) – Human-friendly description of the error, along with
a helpful suggestion or two.

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPUnsupportedMediaType(description, **kwargs)[source]

	415 Unsupported Media Type.

The client is trying to submit a resource encoded as an Internet media
type that the server does not support.

	Parameters:	
	description (str [http://docs.python.org/library/functions.html#str]) – Human-friendly description of the error, along with
a helpful suggestion or two.

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPRangeNotSatisfiable(resource_length)[source]

	416 Range Not Satisfiable.

The requested range is not valid. See also: http://goo.gl/Qsa4EF

	Parameters:	resource_length – The maximum value for the last-byte-pos of a range
request. Used to set the Content-Range header.

	
exception falcon.HTTPUnprocessableEntity(title, description, **kwargs)[source]

	422 Unprocessable Entity.

The request was well-formed but was unable to be followed due to semantic
errors. See also: http://www.ietf.org/rfc/rfc4918.

	Parameters:	
	title (str [http://docs.python.org/library/functions.html#str]) – Error title (e.g., ‘Missing title field’).

	description (str [http://docs.python.org/library/functions.html#str]) – Human-friendly description of the error, along with
a helpful suggestion or two.

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPTooManyRequests(title, description, retry_after=None, **kwargs)[source]

	429 Too Many Requests.

The user has sent too many requests in a given amount of time
(“rate limiting”).

The response representations SHOULD include details explaining the
condition, and MAY include a Retry-After header indicating how long
to wait before making a new request.

(RFC 6585)

	Parameters:	
	title (str [http://docs.python.org/library/functions.html#str]) – Error title (e.g., ‘Too Many Requests’).

	description (str [http://docs.python.org/library/functions.html#str]) – Human-friendly description of the rate limit that
was exceeded.

	retry_after (datetime or int, optional) – Value for the Retry-After
header. If a datetime object, will serialize as an HTTP date.
Otherwise, a non-negative int is expected, representing the
number of seconds to wait.

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPUnavailableForLegalReasons(title, **kwargs)[source]

	451 Unavailable For Legal Reasons.

This status code indicates that the server is denying access to the
resource as a consequence of a legal demand.

See also:
https://datatracker.ietf.org/doc/draft-ietf-httpbis-legally-restricted-status/

	Parameters:	
	title (str [http://docs.python.org/library/functions.html#str]) – Error title (e.g., ‘Legal reason: <reason>’).

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPInternalServerError(title, description, **kwargs)[source]

	500 Internal Server Error.

	Parameters:	
	title (str [http://docs.python.org/library/functions.html#str]) – Error title (e.g., ‘This Should Never Happen’).

	description (str [http://docs.python.org/library/functions.html#str]) – Human-friendly description of the error, along with
a helpful suggestion or two.

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPBadGateway(title, description, **kwargs)[source]

	502 Bad Gateway.

	Parameters:	
	title (str [http://docs.python.org/library/functions.html#str]) – Error title, for
example: ‘Upstream Server is Unavailable’.

	description (str [http://docs.python.org/library/functions.html#str]) – Human-friendly description of the error, along with
a helpful suggestion or two.

	kwargs (optional) – Same as for HTTPError.

	
exception falcon.HTTPServiceUnavailable(title, description, retry_after, **kwargs)[source]

	503 Service Unavailable.

	Parameters:	
	title (str [http://docs.python.org/library/functions.html#str]) – Error title (e.g., ‘Temporarily Unavailable’).

	description (str [http://docs.python.org/library/functions.html#str]) – Human-friendly description of the error, along with
a helpful suggestion or two.

	retry_after (datetime or int) – Value for the Retry-After header. If a
datetime object, will serialize as an HTTP date. Otherwise,
a non-negative int is expected, representing the number of
seconds to wait.

	kwargs (optional) – Same as for HTTPError.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Classes and Functions

Redirection

Falcon defines a set of exceptions that can be raised within a
middleware method, hook, or responder in order to trigger
a 3xx (Redirection) response to the client. Raising one of these
classes short-circuits request processing in a manner similar to
raising an instance or subclass of HTTPError

Base Class

	
class falcon.http_status.HTTPStatus(status, headers=None, body=None)[source]

	Represents a generic HTTP status.

Raise an instance of this class from a hook, middleware, or
responder to short-circuit request processing in a manner similar
to falcon.HTTPError, but for non-error status codes.

	
status

	str – HTTP status line, e.g. ‘748 Confounded by Ponies’.

	
headers

	dict – Extra headers to add to the response.

	
body

	str or unicode – String representing response content. If
Unicode, Falcon will encode as UTF-8 in the response.

	Parameters:	
	status (str [http://docs.python.org/library/functions.html#str]) – HTTP status code and text, such as
‘748 Confounded by Ponies’.

	headers (dict [http://docs.python.org/library/stdtypes.html#dict]) – Extra headers to add to the response.

	body (str or unicode) – String representing response content. If
Unicode, Falcon will encode as UTF-8 in the response.

Redirects

	
exception falcon.HTTPMovedPermanently(location)[source]

	301 Moved Permanently.

The 301 (Moved Permanently) status code indicates that the target
resource has been assigned a new permanent URI.

Note

For historical reasons, a user agent MAY change the request
method from POST to GET for the subsequent request. If this
behavior is undesired, the 308 (Permanent Redirect) status code
can be used instead.

See also: https://tools.ietf.org/html/rfc7231#section-6.4.2

	Parameters:	location (str [http://docs.python.org/library/functions.html#str]) – URI to provide as the Location header in the
response.

	
exception falcon.HTTPFound(location)[source]

	302 Found.

The 302 (Found) status code indicates that the target resource
resides temporarily under a different URI. Since the redirection
might be altered on occasion, the client ought to continue to use the
effective request URI for future requests.

Note

For historical reasons, a user agent MAY change the request
method from POST to GET for the subsequent request. If this
behavior is undesired, the 307 (Temporary Redirect) status code
can be used instead.

See also: https://tools.ietf.org/html/rfc7231#section-6.4.3

	Parameters:	location (str [http://docs.python.org/library/functions.html#str]) – URI to provide as the Location header in the
response.

	
exception falcon.HTTPSeeOther(location)[source]

	303 See Other.

The 303 (See Other) status code indicates that the server is
redirecting the user agent to a different resource, as indicated
by a URI in the Location header field, which is intended to provide
an indirect response to the original request.

A 303 response to a GET request indicates that the origin server
does not have a representation of the target resource that can be
transferred over HTTP. However, the Location header in the response
may be dereferenced to obtain a representation for an alternative
resource. The recipient may find this alternative useful, even
though it does not represent the original target resource.

Note

The new URI in the Location header field is not considered
equivalent to the effective request URI.

See also: https://tools.ietf.org/html/rfc7231#section-6.4.4

	Parameters:	location (str [http://docs.python.org/library/functions.html#str]) – URI to provide as the Location header in the
response.

	
exception falcon.HTTPTemporaryRedirect(location)[source]

	307 Temporary Redirect.

The 307 (Temporary Redirect) status code indicates that the target
resource resides temporarily under a different URI and the user
agent MUST NOT change the request method if it performs an automatic
redirection to that URI. Since the redirection can change over
time, the client ought to continue using the original effective
request URI for future requests.

Note

This status code is similar to 302 (Found), except that it
does not allow changing the request method from POST to GET.

See also: https://tools.ietf.org/html/rfc7231#section-6.4.7

	Parameters:	location (str [http://docs.python.org/library/functions.html#str]) – URI to provide as the Location header in the
response.

	
exception falcon.HTTPPermanentRedirect(location)[source]

	308 Permanent Redirect.

The 308 (Permanent Redirect) status code indicates that the target
resource has been assigned a new permanent URI.

Note

This status code is similar to 301 (Moved Permanently), except
that it does not allow changing the request method from POST to
GET.

See also: https://tools.ietf.org/html/rfc7238#section-3

	Parameters:	location (str [http://docs.python.org/library/functions.html#str]) – URI to provide as the Location header in the
response.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Classes and Functions

Middleware Components

Middleware components provide a way to execute logic before the
framework routes each request, after each request is routed but before
the target responder is called, or just before the response is returned
for each request. Components are registered with the middleware kwarg
when instantiating Falcon’s API class.

Note

Unlike hooks, middleware methods apply globally to the entire API.

Falcon’s middleware interface is defined as follows:

class ExampleComponent(object):
 def process_request(self, req, resp):
 """Process the request before routing it.

 Args:
 req: Request object that will eventually be
 routed to an on_* responder method.
 resp: Response object that will be routed to
 the on_* responder.
 """

 def process_resource(self, req, resp, resource, params):
 """Process the request after routing.

 Note:
 This method is only called when the request matches
 a route to a resource.

 Args:
 req: Request object that will be passed to the
 routed responder.
 resp: Response object that will be passed to the
 responder.
 resource: Resource object to which the request was
 routed.
 params: A dict-like object representing any additional
 params derived from the route's URI template fields,
 that will be passed to the resource's responder
 method as keyword arguments.
 """

 def process_response(self, req, resp, resource):
 """Post-processing of the response (after routing).

 Args:
 req: Request object.
 resp: Response object.
 resource: Resource object to which the request was
 routed. May be None if no route was found
 for the request.
 """

Tip

Because process_request executes before routing has occurred, if a
component modifies req.path in its process_request method,
the framework will use the modified value to route the request.

Tip

The process_resource method is only called when the request matches
a route to a resource. To take action when a route is not found, a
sink may be used instead.

Each component’s process_request, process_resource, and
process_response methods are executed hierarchically, as a stack, following
the ordering of the list passed via the middleware kwarg of
falcon.API. For example, if a list of middleware objects are
passed as [mob1, mob2, mob3], the order of execution is as follows:

mob1.process_request
 mob2.process_request
 mob3.process_request
 mob1.process_resource
 mob2.process_resource
 mob3.process_resource
 <route to responder method>
 mob3.process_response
 mob2.process_response
mob1.process_response

Note that each component need not implement all process_*
methods; in the case that one of the three methods is missing,
it is treated as a noop in the stack. For example, if mob2 did
not implement process_request and mob3 did not implement
process_response, the execution order would look
like this:

mob1.process_request
 _
 mob3.process_request
 mob1.process_resource
 mob2.process_resource
 mob3.process_resource
 <route to responder method>
 _
 mob2.process_response
mob1.process_response

If one of the process_request middleware methods raises an
error, it will be processed according to the error type. If
the type matches a registered error handler, that handler will
be invoked and then the framework will begin to unwind the
stack, skipping any lower layers. The error handler may itself
raise an instance of HTTPError, in which case the framework
will use the latter exception to update the resp object.
Regardless, the framework will continue unwinding the middleware
stack. For example, if mob2.process_request were to raise an
error, the framework would execute the stack as follows:

mob1.process_request
 mob2.process_request
 <skip mob1/mob2 process_resource, mob3, and routing>
 mob2.process_response
mob1.process_response

Finally, if one of the process_response methods raises an error,
or the routed on_* responder method itself raises an error, the
exception will be handled in a similar manner as above. Then,
the framework will execute any remaining middleware on the
stack.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Classes and Functions

Hooks

Falcon supports before and after hooks. You install a hook simply by
applying one of the decorators below, either to an individual responder or
to an entire resource.

For example, consider this hook that validates a POST request for
an image resource:

def validate_image_type(req, resp, resource, params):
 if req.content_type not in ALLOWED_IMAGE_TYPES:
 msg = 'Image type not allowed. Must be PNG, JPEG, or GIF'
 raise falcon.HTTPBadRequest('Bad request', msg)

You would attach this hook to an on_post responder like so:

@falcon.before(validate_image_type)
def on_post(self, req, resp):
 pass

Or, suppose you had a hook that you would like to apply to all
responders for a given resource. In that case, you would simply
decorate the resource class:

@falcon.before(extract_project_id)
class Message(object):
 def on_post(self, req, resp):
 pass

 def on_get(self, req, resp):
 pass

Falcon middleware components can also be used to insert
logic before and after requests. However, unlike hooks,
middleware components are triggered globally for all
requests.

	
falcon.before(action)[source]

	Decorator to execute the given action function before the responder.

	Parameters:	action (callable [http://docs.python.org/library/functions.html#callable]) – A function of the form
func(req, resp, resource, params), where resource is a
reference to the resource class instance associated with the
request, and params is a dict of URI Template field names,
if any, that will be passed into the resource responder as
kwargs.

Note

Hooks may inject extra params as needed. For example:

def do_something(req, resp, resource, params):
 try:
 params['id'] = int(params['id'])
 except ValueError:
 raise falcon.HTTPBadRequest('Invalid ID',
 'ID was not valid.')

 params['answer'] = 42

	
falcon.after(action)[source]

	Decorator to execute the given action function after the responder.

	Parameters:	action (callable [http://docs.python.org/library/functions.html#callable]) – A function of the form
func(req, resp, resource), where resource is a
reference to the resource class instance associated with the
request

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Classes and Functions

Routing

The falcon.routing module contains utilities used internally by
falcon.API() to route requests. They are exposed here for use by
custom routing engines.

A custom router is any class that implements the following interface:

class FancyRouter(object):
 def add_route(self, uri_template, method_map, resource):
 """Adds a route between URI path template and resource.

 Args:
 uri_template (str): The URI template to add.
 method_map (dict): A method map obtained by calling
 falcon.routing.create_http_method_map.
 resource (object): Instance of the resource class that
 will handle requests for the given URI.
 """

 def find(self, uri):
 """Search for a route that matches the given URI.

 Args:
 uri (str): Request URI to match to a route.

 Returns:
 tuple: A 3-member tuple composed of (resource, method_map, params)
 or ``None`` if no route is found.
 """

A custom routing engine may be specified when instantiating
falcon.API(). For example:

fancy = FancyRouter()
api = API(router=fancy)

	
falcon.routing.create_http_method_map(resource)[source]

	Maps HTTP methods (e.g., ‘GET’, ‘POST’) to methods of a resource object.

	Parameters:	resource – An object with responder methods, following the naming
convention on_*, that correspond to each method the resource
supports. For example, if a resource supports GET and POST, it
should define on_get(self, req, resp) and
on_post(self, req, resp).

	Returns:	A mapping of HTTP methods to responders.

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	
falcon.routing.compile_uri_template(template)[source]

	Compile the given URI template string into a pattern matcher.

This function can be used to construct custom routing engines that
iterate through a list of possible routes, attempting to match
an incoming request against each route’s compiled regular expression.

Each field is converted to a named group, so that when a match
is found, the fields can be easily extracted using
re.MatchObject.groupdict() [http://docs.python.org/library/re.html#re.MatchObject.groupdict].

This function does not support the more flexible templating
syntax used in the default router. Only simple paths with bracketed
field expressions are recognized. For example:

/
/books
/books/{isbn}
/books/{isbn}/characters
/books/{isbn}/characters/{name}

Also, note that if the template contains a trailing slash character,
it will be stripped in order to normalize the routing logic.

	Parameters:	template (str [http://docs.python.org/library/functions.html#str]) – The template to compile. Note that field names are
restricted to ASCII a-z, A-Z, and the underscore character.

	Returns:	(template_field_names, template_regex)

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

	
class falcon.routing.CompiledRouter[source]

	Fast URI router which compiles its routing logic to Python code.

Generally you do not need to use this router class directly, as an
instance is created by default when the falcon.API class is initialized.

The router treats URI paths as a tree of URI segments and searches by
checking the URI one segment at a time. Instead of interpreting the route
tree for each look-up, it generates inlined, bespoke Python code to
perform the search, then compiles that code. This makes the route
processing quite fast.

	
add_route(uri_template, method_map, resource)[source]

	Adds a route between URI path template and resource.

	
find(uri)[source]

	Finds resource and method map for a URI, or returns None.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Classes and Functions

Utilities

URI Functions

	
falcon.util.uri.decode(encoded_uri)[source]

	Decodes percent-encoded characters in a URI or query string.

This function models the behavior of urllib.parse.unquote_plus, but
is faster. It is also more robust, in that it will decode escaped
UTF-8 mutibyte sequences.

	Parameters:	encoded_uri (str [http://docs.python.org/library/functions.html#str]) – An encoded URI (full or partial).

	Returns:	
	A decoded URL. Will be of type unicode on Python 2 IFF the

	URL contained escaped non-ASCII characters, in which case
UTF-8 is assumed per RFC 3986.

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
falcon.util.uri.encode(uri)

	Encodes a full or relative URI according to RFC 3986.

RFC 3986 defines a set of “unreserved” characters as well as a
set of “reserved” characters used as delimiters. This function escapes
all other “disallowed” characters by percent-encoding them.

Note

This utility is faster in the average case than the similar
quote function found in urlib. It also strives to be easier
to use by assuming a sensible default of allowed characters.

	Parameters:	uri (str [http://docs.python.org/library/functions.html#str]) – URI or part of a URI to encode. If this is a wide
string (i.e., six.text_type), it will be encoded to
a UTF-8 byte array and any multibyte sequences will
be percent-encoded as-is.

	Returns:	
	An escaped version of uri, where all disallowed characters

	have been percent-encoded.

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
falcon.util.uri.encode_value(uri)

	Encodes a value string according to RFC 3986.

Disallowed characters are percent-encoded in a way that models
urllib.parse.quote(safe="~"). However, the Falcon function is faster
in the average case than the similar quote function found in urlib.
It also strives to be easier to use by assuming a sensible default
of allowed characters.

All reserved characters are lumped together into a single set of
“delimiters”, and everything in that set is escaped.

Note

RFC 3986 defines a set of “unreserved” characters as well as a
set of “reserved” characters used as delimiters.

	Parameters:	uri (str [http://docs.python.org/library/functions.html#str]) – URI fragment to encode. It is assumed not to cross delimiter
boundaries, and so any reserved URI delimiter characters
included in it will be escaped. If value is a wide
string (i.e., six.text_type), it will be encoded to
a UTF-8 byte array and any multibyte sequences will
be percent-encoded as-is.

	Returns:	
	An escaped version of uri, where all disallowed characters

	have been percent-encoded.

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
falcon.util.uri.parse_host(host, default_port=None)[source]

	Parse a canonical ‘host:port’ string into parts.

Parse a host string (which may or may not contain a port) into
parts, taking into account that the string may contain
either a domain name or an IP address. In the latter case,
both IPv4 and IPv6 addresses are supported.

	Parameters:	
	host (str [http://docs.python.org/library/functions.html#str]) – Host string to parse, optionally containing a
port number.

	default_port (int, optional) – Port number to return when
the host string does not contain one (default None).

	Returns:	
	A parsed (host, port) tuple from the given

	host string, with the port converted to an int.
If the host string does not specify a port, default_port is
used instead.

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

	
falcon.util.uri.parse_query_string(query_string, keep_blank_qs_values=False)[source]

	Parse a query string into a dict.

Query string parameters are assumed to use standard form-encoding. Only
parameters with values are parsed. for example, given ‘foo=bar&flag’,
this function would ignore ‘flag’ unless the keep_blank_qs_values option
is set.

Note

In addition to the standard HTML form-based method for specifying
lists by repeating a given param multiple times, Falcon supports
a more compact form in which the param may be given a single time
but set to a list of comma-separated elements (e.g., ‘foo=a,b,c’).

When using this format, all commas uri-encoded will not be treated by
Falcon as a delimiter. If the client wants to send a value as a list,
it must not encode the commas with the values.

The two different ways of specifying lists may not be mixed in
a single query string for the same parameter.

	Parameters:	
	query_string (str [http://docs.python.org/library/functions.html#str]) – The query string to parse.

	keep_blank_qs_values (bool [http://docs.python.org/library/functions.html#bool]) – If set to True, preserves boolean
fields and fields with no content as blank strings.

	Returns:	
	A dictionary of (name, value) pairs, one per query

	parameter. Note that value may be a single str, or a
list of str.

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	Raises:	TypeError – query_string was not a str.

	
falcon.util.uri.unquote_string(quoted)[source]

	Unquote an RFC 7320 “quoted-string”.

	Parameters:	quoted (str [http://docs.python.org/library/functions.html#str]) – Original quoted string

	Returns:	unquoted string

	Return type:	str [http://docs.python.org/library/functions.html#str]

	Raises:	TypeError – quoted was not a str.

Miscellaneous

	
falcon.deprecated(instructions)[source]

	Flags a method as deprecated.

This function returns a decorator which can be used to mark deprecated
functions. Applying this decorator will result in a warning being
emitted when the function is used.

	Parameters:	instructions (str [http://docs.python.org/library/functions.html#str]) – Specific guidance for the developer, e.g.:
‘Please migrate to add_proxy(...)’‘

	
falcon.http_now()[source]

	Returns the current UTC time as an IMF-fixdate.

	Returns:	
	The current UTC time as an IMF-fixdate,

	e.g., ‘Tue, 15 Nov 1994 12:45:26 GMT’.

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
falcon.dt_to_http(dt)[source]

	Converts a datetime instance to an HTTP date string.

	Parameters:	dt (datetime [http://docs.python.org/library/datetime.html#module-datetime]) – A datetime instance to convert, assumed to be UTC.

	Returns:	An RFC 1123 date string, e.g.: “Tue, 15 Nov 1994 12:45:26 GMT”.

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
falcon.http_date_to_dt(http_date, obs_date=False)[source]

	Converts an HTTP date string to a datetime instance.

	Parameters:	
	http_date (str [http://docs.python.org/library/functions.html#str]) – An RFC 1123 date string, e.g.:
“Tue, 15 Nov 1994 12:45:26 GMT”.

	obs_date (bool, optional) – Support obs-date formats according to
RFC 7231, e.g.:
“Sunday, 06-Nov-94 08:49:37 GMT” (default False).

	Returns:	
	A UTC datetime instance corresponding to the given

	HTTP date.

	Return type:	datetime [http://docs.python.org/library/datetime.html#module-datetime]

	Raises:	ValueError – http_date doesn’t match any of the available time formats

	
falcon.to_query_str(params)[source]

	Converts a dictionary of params to a query string.

	Parameters:	params (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of parameters, where each key is a
parameter name, and each value is either a str or
something that can be converted into a str. If params
is a list, it will be converted to a comma-delimited string
of values (e.g., ‘thing=1,2,3’)

	Returns:	
	A URI query string including the ‘?’ prefix, or an empty string

	if no params are given (the dict is empty).

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
class falcon.util.TimezoneGMT[source]

	GMT timezone class implementing the datetime.tzinfo [http://docs.python.org/library/datetime.html#datetime.tzinfo] interface.

	
dst(dt)[source]

	Return the daylight saving time (DST) adjustment.

	Parameters:	dt (datetime.datetime [http://docs.python.org/library/datetime.html#datetime.datetime]) – Ignored

	Returns:	DST adjustment for GMT, which is always 0.

	Return type:	datetime.timedelta [http://docs.python.org/library/datetime.html#datetime.timedelta]

	
tzname(dt)[source]

	Get the name of this timezone.

	Parameters:	dt (datetime.datetime [http://docs.python.org/library/datetime.html#datetime.datetime]) – Ignored

	Returns:	“GMT”

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
utcoffset(dt)[source]

	Get the offset from UTC.

	Parameters:	dt (datetime.datetime [http://docs.python.org/library/datetime.html#datetime.datetime]) – Ignored

	Returns:	
	GMT offset, which is equivalent to UTC and

	so is aways 0.

	Return type:	datetime.timedelta [http://docs.python.org/library/datetime.html#datetime.timedelta]

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Classes and Functions

Testing

	
class falcon.testing.TestCase(methodName='runTest')[source]

	Extends unittest [http://docs.python.org/library/unittest.html#module-unittest] to support WSGI functional testing.

Note

If available, uses testtools in lieu of
unittest [http://docs.python.org/library/unittest.html#module-unittest].

This base class provides some extra plumbing for unittest-style
test cases, to help simulate WSGI calls without having to spin up
an actual web server. Simply inherit from this class in your test
case classes instead of unittest.TestCase [http://docs.python.org/library/unittest.html#unittest.TestCase] or
testtools.TestCase.

	
api_class

	class – An API class to use when instantiating
the api instance (default: falcon.API)

	
api

	object – An API instance to target when simulating
requests (default: self.api_class())

	
simulate_delete(path='/', **kwargs)[source]

	Simulates a DELETE request to a WSGI application.

Equivalent to simulate_request('DELETE', ...)

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – The URL path to request (default: ‘/’)

	Keyword Arguments:

		
	query_string (str) – A raw query string to include in the
request (default: None)

	headers (dict) – Additional headers to include in the request
(default: None)

	
simulate_get(path='/', **kwargs)[source]

	Simulates a GET request to a WSGI application.

Equivalent to simulate_request('GET', ...)

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – The URL path to request (default: ‘/’)

	Keyword Arguments:

		
	query_string (str) – A raw query string to include in the
request (default: None)

	headers (dict) – Additional headers to include in the request
(default: None)

	
simulate_head(path='/', **kwargs)[source]

	Simulates a HEAD request to a WSGI application.

Equivalent to simulate_request('HEAD', ...)

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – The URL path to request (default: ‘/’)

	Keyword Arguments:

		
	query_string (str) – A raw query string to include in the
request (default: None)

	headers (dict) – Additional headers to include in the request
(default: None)

	
simulate_options(path='/', **kwargs)[source]

	Simulates an OPTIONS request to a WSGI application.

Equivalent to simulate_request('OPTIONS', ...)

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – The URL path to request (default: ‘/’)

	Keyword Arguments:

		
	query_string (str) – A raw query string to include in the
request (default: None)

	headers (dict) – Additional headers to include in the request
(default: None)

	
simulate_patch(path='/', **kwargs)[source]

	Simulates a PATCH request to a WSGI application.

Equivalent to simulate_request('PATCH', ...)

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – The URL path to request (default: ‘/’)

	Keyword Arguments:

		
	query_string (str) – A raw query string to include in the
request (default: None)

	headers (dict) – Additional headers to include in the request
(default: None)

	body (str) – A string to send as the body of the request.
Accepts both byte strings and Unicode strings
(default: None). If a Unicode string is provided,
it will be encoded as UTF-8 in the request.

	
simulate_post(path='/', **kwargs)[source]

	Simulates a POST request to a WSGI application.

Equivalent to simulate_request('POST', ...)

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – The URL path to request (default: ‘/’)

	Keyword Arguments:

		
	query_string (str) – A raw query string to include in the
request (default: None)

	headers (dict) – Additional headers to include in the request
(default: None)

	body (str) – A string to send as the body of the request.
Accepts both byte strings and Unicode strings
(default: None). If a Unicode string is provided,
it will be encoded as UTF-8 in the request.

	
simulate_put(path='/', **kwargs)[source]

	Simulates a PUT request to a WSGI application.

Equivalent to simulate_request('PUT', ...)

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – The URL path to request (default: ‘/’)

	Keyword Arguments:

		
	query_string (str) – A raw query string to include in the
request (default: None)

	headers (dict) – Additional headers to include in the request
(default: None)

	body (str) – A string to send as the body of the request.
Accepts both byte strings and Unicode strings
(default: None). If a Unicode string is provided,
it will be encoded as UTF-8 in the request.

	
simulate_request(method='GET', path='/', query_string=None, headers=None, body=None, file_wrapper=None)[source]

	Simulates a request to a WSGI application.

Performs a WSGI request directly against self.api.

	Keyword Arguments:

		
	method (str) – The HTTP method to use in the request
(default: ‘GET’)

	path (str) – The URL path to request (default: ‘/’)

	query_string (str) – A raw query string to include in the
request (default: None)

	headers (dict) – Additional headers to include in the request
(default: None)

	body (str) – A string to send as the body of the request.
Accepts both byte strings and Unicode strings
(default: None). If a Unicode string is provided,
it will be encoded as UTF-8 in the request.

	file_wrapper (callable) – Callable that returns an iterable,
to be used as the value for wsgi.file_wrapper in the
environ (default: None).

	Returns:	The result of the request

	Return type:	Result

	
class falcon.testing.Result(iterable, status, headers)[source]

	Encapsulates the result of a simulated WSGI request.

	Parameters:	
	iterable (iterable) – An iterable that yields zero or more
bytestrings, per PEP-3333

	status (str [http://docs.python.org/library/functions.html#str]) – An HTTP status string, including status code and
reason string

	headers (list [http://docs.python.org/library/functions.html#list]) – A list of (header_name, header_value) tuples,
per PEP-3333

	
status

	str – HTTP status string given in the response

	
status_code

	int – The code portion of the HTTP status string

	
headers

	CaseInsensitiveDict – A case-insensitive dictionary
containing all the headers in the response

	
encoding

	str – Text encoding of the response body, or None
if the encoding can not be determined.

	
content

	bytes – Raw response body, or bytes if the
response body was empty.

	
text

	str – Decoded response body of type unicode
under Python 2.6 and 2.7, and of type str otherwise.
Raises an error if the response encoding can not be
determined.

	
json

	dict – Deserialized JSON body. Raises an error if the
response is not JSON.

	
class falcon.testing.SimpleTestResource(status=None, body=None, json=None, headers=None)[source]

	Mock resource for functional testing of framework components.

This class implements a simple test resource that can be extended
as needed to test middleware, hooks, and the Falcon framework
itself.

Only the on_get() responder is implemented; when adding
additional responders in child classes, they can be decorated
with the falcon.testing.capture_responder_args() hook in
order to capture the req, resp, and params arguments that
are passed to the responder. Responders may also be decorated with
the falcon.testing.set_resp_defaults() hook in order to
set resp properties to default status, body, and header
values.

	Keyword Arguments:

		
	status (str) – Default status string to use in responses

	body (str) – Default body string to use in responses

	json (dict) – Default JSON document to use in responses. Will
be serialized to a string and encoded as UTF-8. Either
json or body may be specified, but not both.

	headers (dict) – Default set of additional headers to include in
responses

	
captured_req

	falcon.Request – The last Request object passed
into any one of the responder methods.

	
captured_resp

	falcon.Response – The last Response object passed
into any one of the responder methods.

	
captured_kwargs

	dict – The last dictionary of kwargs, beyond
req and resp, that were passed into any one of the
responder methods.

	
class falcon.testing.StartResponseMock[source]

	Mock object representing a WSGI start_response callable.

	
call_count

	int – Number of times start_response was called.

	
status

	str – HTTP status line, e.g. ‘785 TPS Cover Sheet
not attached’.

	
headers

	list – Raw headers list passed to start_response,
per PEP-333.

	
headers_dict

	dict – Headers as a case-insensitive
dict-like object, instead of a list.

	
falcon.testing.capture_responder_args(req, resp, resource, params)[source]

	Before hook for capturing responder arguments.

Adds the following attributes to the hooked responder’s resource
class:

	captured_req

	captured_resp

	captured_kwargs

	
falcon.testing.rand_string(min, max)[source]

	Returns a randomly-generated string, of a random length.

	Parameters:	
	min (int [http://docs.python.org/library/functions.html#int]) – Minimum string length to return, inclusive

	max (int [http://docs.python.org/library/functions.html#int]) – Maximum string length to return, inclusive

	
falcon.testing.create_environ(path='/', query_string='', protocol='HTTP/1.1', scheme='http', host='falconframework.org', port=None, headers=None, app='', body='', method='GET', wsgierrors=None, file_wrapper=None)[source]

	Creates a mock PEP-3333 environ dict for simulating WSGI requests.

	Keyword Arguments:

		
	path (str) – The path for the request (default ‘/’)

	query_string (str) – The query string to simulate, without a
leading ‘?’ (default ‘’)

	protocol (str) – The HTTP protocol to simulate
(default ‘HTTP/1.1’). If set to ‘HTTP/1.0’, the Host header
will not be added to the environment.

	scheme (str) – URL scheme, either ‘http’ or ‘https’ (default ‘http’)

	host (str) – Hostname for the request (default ‘falconframework.org’)

	port (str) – The TCP port to simulate. Defaults to
the standard port used by the given scheme (i.e., 80 for ‘http’
and 443 for ‘https’).

	headers (dict) – Headers as a dict or an iterable yielding
(key, value) tuple‘s

	app (str) – Value for the SCRIPT_NAME environ variable, described in
PEP-333: ‘The initial portion of the request URL’s “path” that
corresponds to the application object, so that the application
knows its virtual “location”. This may be an empty string, if the
application corresponds to the “root” of the server.’ (default ‘’)

	body (str) – The body of the request (default ‘’). Accepts both byte
strings and Unicode strings. Unicode strings are encoded as UTF-8
in the request.

	method (str) – The HTTP method to use (default ‘GET’)

	wsgierrors (io) – The stream to use as wsgierrors
(default sys.stderr)

	file_wrapper – Callable that returns an iterable, to be used as
the value for wsgi.file_wrapper in the environ.

Deprecated

	
class falcon.testing.TestBase(methodName='runTest')[source]

	Extends unittest [http://docs.python.org/library/unittest.html#module-unittest] to support WSGI functional testing.

Warning

This class has been deprecated and will be removed in a future
release. Please use TestCase
instead.

Note

If available, uses testtools in lieu of
unittest [http://docs.python.org/library/unittest.html#module-unittest].

This base class provides some extra plumbing for unittest-style
test cases, to help simulate WSGI calls without having to spin up
an actual web server. Simply inherit from this class in your test
case classes instead of unittest.TestCase [http://docs.python.org/library/unittest.html#unittest.TestCase] or
testtools.TestCase.

	
api

	falcon.API – An API instance to target when simulating
requests. Defaults to falcon.API().

	
srmock

	falcon.testing.StartResponseMock – Provides a callable
that simulates the behavior of the start_response argument
that the server would normally pass into the WSGI app. The
mock object captures various information from the app’s
response to the simulated request.

	
test_route

	str – A simple, generated path that a test
can use to add a route to the API.

	
api_class

	alias of API

	
setUp()[source]

	Initializer, unittest-style

	
simulate_request(path, decode=None, **kwargs)[source]

	Simulates a request to self.api.

	Parameters:	
	path (str [http://docs.python.org/library/functions.html#str]) – The path to request.

	decode (str, optional) – If this is set to a character encoding,
such as ‘utf-8’, simulate_request will assume the
response is a single byte string, and will decode it as the
result of the request, rather than simply returning the
standard WSGI iterable.

	kwargs (optional) – Same as those defined for
falcon.testing.create_environ.

	
srmock_class

	alias of StartResponseMock

	
tearDown()[source]

	Destructor, unittest-style

	
class falcon.testing.TestResource[source]

	Mock resource for functional testing.

Warning

This class is deprecated and will be removed in a future
release. Please use SimpleTestResource
instead.

This class implements the on_get responder, captures
request data, and sets response body and headers.

Child classes may add additional methods and attributes as
needed.

	
sample_status

	str – HTTP status to set in the response

	
sample_body

	str – Random body string to set in the response

	
resp_headers

	dict – Sample headers to use in the response

	
req

	falcon.Request – Request object passed into the on_get
responder.

	
resp

	falcon.Response – Response object passed into the on_get
responder.

	
kwargs

	dict – Keyword arguments passed into the on_get
responder, if any.

	
called

	bool – True if on_get was ever called; False
otherwise.

	
on_get(req, resp, **kwargs)[source]

	GET responder.

Captures req, resp, and kwargs. Also sets up a sample response.

	Parameters:	
	req – Falcon Request instance.

	resp – Falcon Response instance.

	kwargs – URI template name=value pairs, if any, along with
any extra args injected by middleware.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

Changelogs

	1.0.0
	Breaking Changes

	New & Improved

	Fixed

	0.3.0
	Breaking Changes

	New & Improved

	Fixed

	0.2.0
	Breaking Changes

	New & Improved

	Fixed

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Changelogs

Changelog for Falcon 1.0.0

Breaking Changes

	The deprecated global hooks feature has been removed.
API no longer accepts before and after
kwargs. Applications can work around this by migrating any logic
contained in global hooks to reside in middleware components instead.

	The middleware method process_resource() must now accept
an additional params argument. This gives the middleware method an
opportunity to interact with the values for any fields defined in a
route’s URI template.

	The middleware method process_resource() is now skipped when
no route is found for the incoming request. This avoids having to
include an if resource is not None check when implementing this
method. A sink may be used instead to execute logic in the case that
no route is found.

	An option was added to toggle automatic parsing of form params. Falcon
will no longer automatically parse, by default, requests that have the
content type “application/x-www-form-urlencoded”. This was done to
avoid unintended side-effects that may arise from consuming the
request stream. It also makes it more straightforward for applications
to customize and extend the handling of form submissions. Applications
that require this functionality must re-enable it explicitly, by
setting a new request option that was added for that purpose, per the
example below:

app = falcon.API()
app.req_options.auto_parse_form_urlencoded = True

	The HTTPUnauthorized initializer now requires an
additional argument, challenges. Per RFC 7235, a server returning a
401 must include a WWW-Authenticate header field containing at least
one challenge.

	The performance of composing the response body was
improved. As part of this work, the Response.body_encoded
attribute was removed. This property was only intended to be used by
the framework itself, but any dependent code can be migrated per
the example below:

Before
body = resp.body_encoded

After
if resp.body:
 body = resp.body.encode('utf-8')
else:
 body = b''

New & Improved

	A code of conduct [https://github.com/falconry/falcon/blob/master/CODEOFCONDUCT.md]
was added to solidify our community’s commitment to sustaining a
welcoming, respectful culture.

	CPython 3.5 is now fully supported.

	The constants HTTP_422, HTTP_428, HTTP_429, HTTP_431, HTTP_451, and
HTTP_511 were added.

	The HTTPUnprocessableEntity,
HTTPTooManyRequests, and
HTTPUnavailableForLegalReasons error classes were
added.

	The HTTPStatus class is now available directly under
the falcon module, and has been properly documented.

	Support for HTTP redirections was added via a set of
HTTPStatus subclasses. This should avoid the problem
of hooks and responder methods possibly overriding the redirect.
Raising an instance of one of these new redirection classes will
short-circuit request processing, similar to raising an instance of
HTTPError.

	The default 404 responder now raises an instance of
HTTPError instead of manipulating the
response object directly. This makes it possible to customize the
response body using a custom error handler or serializer.

	A new method, get_header(), was added to
Response. Previously there was no way to check if a
header had been set. The new get_header()
method facilitates this and other use cases.

	falcon.Request.client_accepts_msgpack() now recognizes
“application/msgpack”, in addition to “application/x-msgpack”.

	New access_route and remote_addr properties were added
to Request for getting upstream IP addresses.

	Request and Response now support
range units other than bytes.

	The API and
StartResponseMock class types can now be
customized by inheriting from TestBase and
overriding the api_class and srmock_class class attributes.

	Path segments with multiple field expressions may now be defined at
the same level as path segments having only a single field
expression. For example:

api.add_route('/files/{file_id}', resource_1)
api.add_route('/files/{file_id}.{ext}', resource_2)

	Support was added to API.add_route() for passing through
additional args and kwargs to custom routers.

	Digits and the underscore character are now allowed in the
falcon.routing.compile_uri_template() helper, for use in custom
router implementations.

	A new testing framework was added that should be more intuitive to
use than the old one. Several of Falcon’s own tests were ported to use
the new framework (the remainder to be ported in a
subsequent release.) The new testing framework performs wsgiref
validation on all requests.

	The performance of setting Response.content_range was
improved by ~50%.

	A new param, obs_date, was added to
falcon.Request.get_header_as_datetime(), and defaults to
False. This improves the method’s performance when obsolete date
formats do not need to be supported.

Fixed

	Field expressions at a given level in the routing tree no longer
mask alternative branches. When a single segment in a requested path
can match more than one node at that branch in the routing tree, and
the first branch taken happens to be the wrong one (i.e., the
subsequent nodes do not match, but they would have under a different
branch), the other branches that could result in a
successful resolution of the requested path will now be subsequently
tried, whereas previously the framework would behave as if no route
could be found.

	The user agent is now instructed to expire the cookie when it is
cleared via unset_cookie().

	Support was added for hooks that have been defined via
functools.partial().

	Tunneled UTF-8 characters in the request path are now properly
decoded, and a placeholder character is substituted for any invalid
code points.

	The instantiation of Request.context_type is now
delayed until after all other properties of the
Request class have been initialized, in case the
context type’s own initialization depends on any of
Request‘s properties.

	A case was fixed in which reading from Request.stream
could hang when using wsgiref [http://docs.python.org/library/wsgiref.html#module-wsgiref] to host the app.

	The default error serializer now sets the Vary header in responses.
Implementing this required passing the Response
object to the serializer, which would normally be a breaking change.
However, the framework was modified to detect old-style error
serializers and wrap them with a shim to make them compatible with
the new interface.

	A query string containing malformed percent-encoding no longer causes
the framework to raise an error.

	Additional tests were added for a few lines of code that were
previously not covered, due to deficiencies in code coverage reporting
that have since been corrected.

	The Cython note is no longer displayed when installing under Jython.

	Several errors and ambiguities in the documentation were corrected.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Changelogs

Changelog for Falcon 0.3.0

Breaking Changes

	Date headers are now returned as datetime.datetime [http://docs.python.org/library/datetime.html#datetime.datetime] objects
instead of strings.

New & Improved

	This release includes a new router architecture for improved performance
and flexibility.

	A custom router can now be specified when instantiating the
API class.

	URI templates can now include multiple parameterized fields within a
single path segment.

	Falcon now supports reading and writing cookies.

	Falcon now supports Jython 2.7.

	A method for getting a query param as a date was added to the
Request class.

	Date headers are now returned as datetime.datetime [http://docs.python.org/library/datetime.html#datetime.datetime] objects.

	A default value can now be specified when calling
Request.get_param(). This provides an alternative to using the
pattern:

value = req.get_param(name) or default_value

	Friendly constants for status codes were added (e.g.,
falcon.HTTP_NO_CONTENT vs. falcon.HTTP_204.)

	Several minor performance optimizations were made to the code base.

Fixed

	The query string parser was modified to improve handling of percent-encoded
data.

	Several errors in the documentation were corrected.

	The six package was pinned to 1.4.0 or better.
six.PY2 is required by Falcon, but that wasn’t added to
six until version 1.4.0.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Falcon 1.0.0 documentation

 	Changelogs

Changelog for Falcon 0.2.0

Breaking Changes

	The deprecated util.misc.percent_escape and
util.misc.percent_unescape functions were removed. Please use the
functions in the util.uri module instead.

	The deprecated function, API.set_default_route, was removed. Please
use sinks instead.

	HTTPRangeNotSatisfiable no longer accepts a media_type parameter.

	When using the comma-delimited list convention,
req.get_param_as_list(...) will no longer insert placeholders,
using the None type, for empty elements. For example, where
previously the query string “foo=1,,3” would result in [‘1’, None,
‘3’], it will now result in [‘1’, ‘3’].

New & Improved

	Since 0.1 we’ve added proper RTD docs to make it easier for everyone
to get started with the framework. Over time we will continue adding
content, and we would love your help!

	Falcon now supports “wsgi.filewrapper”. You can assign any file-like
object to resp.stream and Falcon will use “wsgi.filewrapper” to more
efficiently pipe the data to the WSGI server.

	Support was added for automatically parsing requests containing
“application/x-www-form-urlencoded” content. Form fields are now
folded into req.params.

	Custom Request and Response classes are now supported. You can
specify custom types when instantiating falcon.API.

	A new middleware feature was added to the framework. Middleware
deprecates global hooks, and we encourage everyone to migrate as soon
as possible.

	A general-purpose dict attribute was added to Request. Middleware,
hooks, and responders can now use req.context to share contextual
information about the current request.

	A new method, append_header, was added to falcon.API to allow
setting multiple values for the same header using comma separation.
Note that this will not work for setting cookies, but we plan to
address this in the next release (0.3).

	A new “resource” attribute was added to hooks. Old hooks that do not
accept this new attribute are shimmed so that they will continue to
function. While we have worked hard to minimize the performance
impact, we recommend migrating to the new function signature to avoid
any overhead.

	Error response bodies now support XML in addition to JSON. In
addition, the HTTPError serialization code was refactored to make it
easier to implement a custom error serializer.

	A new method, “set_error_serializer” was added to falcon.API. You
can use this method to override Falcon’s default HTTPError serializer
if you need to support custom media types.

	Falcon’s testing base class, testing.TestBase was improved to
facilitate Py3k testing. Notably, TestBase.simulate_request now
takes an additional “decode” kwarg that can be used to automatically
decode byte-string PEP-3333 response bodies.

	An “add_link” method was added to the Response class. Apps can use
this method to add one or more Link header values to a response.

	Added two new properties, req.host and req.subdomain, to make it
easier to get at the hostname info in the request.

	Allow a wider variety of characters to be used in query string
params.

	Internal APIs have been refactored to allow overriding the default
routing mechanism. Further modularization is planned for the next
release (0.3).

	Changed req.get_param so that it behaves the same whether a list was
specified in the query string using the HTML form style (in which
each element is listed in a separate ‘key=val’ field) or in the more
compact API style (in which each element is comma-separated and
assigned to a single param instance, as in ‘key=val1,val2,val3’)

	Added a convenience method, set_stream(...), to the Response class
for setting the stream and its length at the same time, which should
help people not forget to set both (and save a few keystrokes along
the way).

	Added several new error classes, including HTTPRequestEntityTooLarge,
HTTPInvalidParam, HTTPMissingParam, HTTPInvalidHeader and
HTTPMissingHeader.

	Python 3.4 is now fully supported.

	Various minor performance improvements

Fixed

	Ensure 100% test coverage and fix any bugs identified in the process.

	Fix not recognizing the “bytes=” prefix in Range headers.

	Make HTTPNotFound and HTTPMethodNotAllowed fully compliant, according
to RFC 7231.

	Fixed the default on_options responder causing a Cython type error.

	URI template strings can now be of type unicode under Python 2.

	When SCRIPT_NAME is not present in the WSGI environ, return an empty
string for the req.app property.

	Global “after” hooks will now be executed even when a responder
raises an error.

	Fixed several minor issues regarding testing.create_environ(...)

	Work around a wsgiref quirk, where if no content-length header is
submitted by the client, wsgiref will set the value of that header to
an empty string in the WSGI environ.

	Resolved an issue causing several source files to not be Cythonized.

	Docstrings have been edited for clarity and correctness.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Falcon 1.0.0 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 falcon	

 	
 	
 falcon.routing	

 	
 	
 falcon.testing	

 	
 	
 falcon.util.uri	

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Falcon 1.0.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	

 	accept (Request attribute)

 	access_route (Request attribute)

 	add_error_handler() (falcon.API method)

 	add_link() (falcon.Response method)

 	add_route() (falcon.API method)

 	

 	(falcon.routing.CompiledRouter method)

 	add_sink() (falcon.API method)

 	after() (in module falcon)

 	

 	API (class in falcon)

 	api (falcon.testing.TestBase attribute)

 	

 	(TestCase attribute)

 	api_class (falcon.testing.TestBase attribute)

 	

 	(TestCase attribute)

 	app (Request attribute)

 	append_header() (falcon.Response method)

 	auth (Request attribute)

 	auto_parse_form_urlencoded (RequestOptions attribute)

B

 	

 	before() (in module falcon)

 	

 	body (HTTPStatus attribute), [1]

 	

 	(Response attribute)

C

 	

 	cache_control (falcon.Response attribute)

 	call_count (StartResponseMock attribute)

 	called (falcon.testing.TestResource attribute)

 	capture_responder_args() (in module falcon.testing)

 	captured_kwargs (SimpleTestResource attribute)

 	captured_req (SimpleTestResource attribute)

 	captured_resp (SimpleTestResource attribute)

 	client_accepts() (falcon.Request method)

 	client_accepts_json (Request attribute)

 	client_accepts_msgpack (Request attribute)

 	client_accepts_xml (Request attribute)

 	client_prefers() (falcon.Request method)

 	code (HTTPError attribute)

 	

 	compile_uri_template() (in module falcon.routing)

 	CompiledRouter (class in falcon.routing)

 	content (Result attribute)

 	content_length (Request attribute)

 	content_location (falcon.Response attribute)

 	content_range (falcon.Response attribute)

 	content_type (falcon.Response attribute)

 	

 	(Request attribute)

 	context (Request attribute)

 	context_type (Request attribute)

 	cookies (Request attribute)

 	create_environ() (in module falcon.testing)

 	create_http_method_map() (in module falcon.routing)

D

 	

 	data (Response attribute)

 	date (Request attribute)

 	decode() (in module falcon.util.uri)

 	deprecated() (in module falcon)

 	

 	description (HTTPError attribute)

 	dst() (falcon.util.TimezoneGMT method)

 	dt_to_http() (in module falcon)

E

 	

 	encode() (in module falcon.util.uri)

 	encode_value() (in module falcon.util.uri)

 	encoding (Result attribute)

 	

 	env (Request attribute)

 	etag (falcon.Response attribute)

 	expect (Request attribute)

F

 	

 	falcon (module), [1], [2], [3]

 	falcon.routing (module)

 	falcon.testing (module)

 	

 	falcon.util.uri (module)

 	find() (falcon.routing.CompiledRouter method)

G

 	

 	get_header() (falcon.Request method)

 	

 	(falcon.Response method)

 	get_header_as_datetime() (falcon.Request method)

 	get_param() (falcon.Request method)

 	get_param_as_bool() (falcon.Request method)

 	

 	get_param_as_date() (falcon.Request method)

 	get_param_as_int() (falcon.Request method)

 	get_param_as_list() (falcon.Request method)

H

 	

 	has_representation (HTTPError attribute)

 	headers (HTTPError attribute)

 	

 	(HTTPStatus attribute), [1]

 	(Request attribute)

 	(Result attribute)

 	(StartResponseMock attribute)

 	headers_dict (StartResponseMock attribute)

 	host (Request attribute)

 	http_date_to_dt() (in module falcon)

 	http_now() (in module falcon)

 	HTTPBadGateway

 	HTTPBadRequest

 	HTTPConflict

 	HTTPError (class in falcon)

 	HTTPForbidden

 	HTTPFound

 	HTTPInternalServerError

 	HTTPInvalidHeader

 	HTTPInvalidParam

 	HTTPLengthRequired

 	HTTPMethodNotAllowed

 	

 	HTTPMissingHeader

 	HTTPMissingParam

 	HTTPMovedPermanently

 	HTTPNotAcceptable

 	HTTPNotFound

 	HTTPPermanentRedirect

 	HTTPPreconditionFailed

 	HTTPRangeNotSatisfiable

 	HTTPSeeOther

 	HTTPServiceUnavailable

 	HTTPStatus (class in falcon)

 	

 	(class in falcon.http_status)

 	HTTPTemporaryRedirect

 	HTTPTooManyRequests

 	HTTPUnauthorized

 	HTTPUnavailableForLegalReasons

 	HTTPUnprocessableEntity

 	HTTPUnsupportedMediaType

I

 	

 	if_match (Request attribute)

 	if_modified_since (Request attribute)

 	if_none_match (Request attribute)

 	

 	if_range (Request attribute)

 	if_unmodified_since (Request attribute)

J

 	

 	json (Result attribute)

K

 	

 	keep_blank_qs_values (RequestOptions attribute)

 	

 	kwargs (falcon.testing.TestResource attribute)

L

 	

 	last_modified (falcon.Response attribute)

 	link (HTTPError attribute)

 	

 	location (falcon.Response attribute)

 	log_error() (falcon.Request method)

M

 	

 	method (Request attribute)

N

 	

 	NoRepresentation (class in falcon.http_error)

O

 	

 	on_get() (falcon.testing.TestResource method)

 	

 	options (Request attribute)

P

 	

 	params (Request attribute)

 	parse_host() (in module falcon.util.uri)

 	parse_query_string() (in module falcon.util.uri)

 	

 	path (Request attribute)

 	protocol (Request attribute)

Q

 	

 	query_string (Request attribute)

R

 	

 	rand_string() (in module falcon.testing)

 	range (Request attribute)

 	range_unit (Request attribute)

 	relative_uri (Request attribute)

 	remote_addr (Request attribute)

 	req (falcon.testing.TestResource attribute)

 	req_options (API attribute)

 	

 	Request (class in falcon)

 	RequestOptions (class in falcon)

 	resp (falcon.testing.TestResource attribute)

 	resp_headers (falcon.testing.TestResource attribute)

 	Response (class in falcon)

 	Result (class in falcon.testing)

 	retry_after (falcon.Response attribute)

S

 	

 	sample_body (falcon.testing.TestResource attribute)

 	sample_status (falcon.testing.TestResource attribute)

 	set_cookie() (falcon.Response method)

 	set_error_serializer() (falcon.API method)

 	set_header() (falcon.Response method)

 	set_headers() (falcon.Response method)

 	set_stream() (falcon.Response method)

 	setUp() (falcon.testing.TestBase method)

 	SimpleTestResource (class in falcon.testing)

 	simulate_delete() (falcon.testing.TestCase method)

 	simulate_get() (falcon.testing.TestCase method)

 	simulate_head() (falcon.testing.TestCase method)

 	simulate_options() (falcon.testing.TestCase method)

 	

 	simulate_patch() (falcon.testing.TestCase method)

 	simulate_post() (falcon.testing.TestCase method)

 	simulate_put() (falcon.testing.TestCase method)

 	simulate_request() (falcon.testing.TestBase method)

 	

 	(falcon.testing.TestCase method)

 	srmock (falcon.testing.TestBase attribute)

 	srmock_class (falcon.testing.TestBase attribute)

 	StartResponseMock (class in falcon.testing)

 	status (HTTPError attribute)

 	

 	(HTTPStatus attribute), [1]

 	(Response attribute)

 	(Result attribute)

 	(StartResponseMock attribute)

 	status_code (Result attribute)

 	stream (Request attribute)

 	

 	(Response attribute)

 	stream_len (Response attribute)

 	subdomain (Request attribute)

T

 	

 	tearDown() (falcon.testing.TestBase method)

 	test_route (falcon.testing.TestBase attribute)

 	TestBase (class in falcon.testing)

 	TestCase (class in falcon.testing)

 	TestResource (class in falcon.testing)

 	text (Result attribute)

 	TimezoneGMT (class in falcon.util)

 	

 	title (HTTPError attribute)

 	to_dict() (falcon.HTTPError method)

 	to_json() (falcon.HTTPError method)

 	to_query_str() (in module falcon)

 	to_xml() (falcon.HTTPError method)

 	tzname() (falcon.util.TimezoneGMT method)

U

 	

 	unquote_string() (in module falcon.util.uri)

 	unset_cookie() (falcon.Response method)

 	uri (Request attribute)

 	

 	url (Request attribute)

 	user_agent (Request attribute)

 	utcoffset() (falcon.util.TimezoneGMT method)

V

 	

 	vary (falcon.Response attribute)

 Created using Sphinx 1.3.5.

 _modules/falcon/response.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.response

Copyright 2013 by Rackspace Hosting, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

from six import PY2
from six import string_types as STRING_TYPES

NOTE(tbug): In some cases, http_cookies is not a module
but a dict-like structure. This fixes that issue.
See issue https://github.com/falconry/falcon/issues/556
from six.moves import http_cookies

from falcon.response_helpers import header_property, format_range
from falcon.response_helpers import is_ascii_encodable
from falcon.util import dt_to_http, TimezoneGMT
from falcon.util.uri import encode as uri_encode
from falcon.util.uri import encode_value as uri_encode_value

SimpleCookie = http_cookies.SimpleCookie
CookieError = http_cookies.CookieError

GMT_TIMEZONE = TimezoneGMT()

[docs]class Response(object):
 """Represents an HTTP response to a client request.

 Note:
 `Response` is not meant to be instantiated directly by responders.

 Attributes:
 status (str): HTTP status line (e.g., '200 OK'). Falcon requires the
 full status line, not just the code (e.g., 200). This design
 makes the framework more efficient because it does not have to
 do any kind of conversion or lookup when composing the WSGI
 response.

 If not set explicitly, the status defaults to '200 OK'.

 Note:
 Falcon provides a number of constants for common status
 codes. They all start with the ``HTTP_`` prefix, as in:
 ``falcon.HTTP_204``.

 body (str or unicode): String representing response content. If
 Unicode, Falcon will encode as UTF-8 in the response. If
 data is already a byte string, use the data attribute
 instead (it's faster).
 data (bytes): Byte string representing response content.

 Use this attribute in lieu of `body` when your content is
 already a byte string (``str`` or ``bytes`` in Python 2, or
 simply ``bytes`` in Python 3). See also the note below.

 Note:
 Under Python 2.x, if your content is of type ``str``, using
 the `data` attribute instead of `body` is the most
 efficient approach. However, if
 your text is of type ``unicode``, you will need to use the
 `body` attribute instead.

 Under Python 3.x, on the other hand, the 2.x ``str`` type can
 be thought of as
 having been replaced by what was once the ``unicode`` type,
 and so you will need to always use the `body` attribute for
 strings to
 ensure Unicode characters are properly encoded in the
 HTTP response.

 stream: Either a file-like object with a `read()` method that takes
 an optional size argument and returns a block of bytes, or an
 iterable object, representing response content, and yielding
 blocks as byte strings. Falcon will use *wsgi.file_wrapper*, if
 provided by the WSGI server, in order to efficiently serve
 file-like objects.

 stream_len (int): Expected length of `stream`. If `stream` is set,
 but `stream_len` is not, Falcon will not supply a
 Content-Length header to the WSGI server. Consequently, the
 server may choose to use chunked encoding or one of the
 other strategies suggested by PEP-3333.
 """

 __slots__ = (
 'body',
 'data',
 '_headers',
 '_cookies',
 'status',
 'stream',
 'stream_len'
)

 def __init__(self):
 self.status = '200 OK'
 self._headers = {}

 # NOTE(tbug): will be set to a SimpleCookie object
 # when cookie is set via set_cookie
 self._cookies = None

 self.body = None
 self.data = None
 self.stream = None
 self.stream_len = None

[docs] def set_stream(self, stream, stream_len):
 """Convenience method for setting both `stream` and `stream_len`.

 Although the `stream` and `stream_len` properties may be set
 directly, using this method ensures `stream_len` is not
 accidentally neglected when the length of the stream is known in
 advance.

 Note:
 If the stream length is unknown, you can set `stream`
 directly, and ignore `stream_len`. In this case, the
 WSGI server may choose to use chunked encoding or one
 of the other strategies suggested by PEP-3333.
 """

 self.stream = stream
 self.stream_len = stream_len

[docs] def set_cookie(self, name, value, expires=None, max_age=None,
 domain=None, path=None, secure=True, http_only=True):
 """Set a response cookie.

 Note:
 This method can be called multiple times to add one or
 more cookies to the response.

 See Also:
 To learn more about setting cookies, see
 :ref:`Setting Cookies <setting-cookies>`. The parameters listed
 below correspond to those defined in `RFC 6265`_.

 Args:
 name (str):
 Cookie name
 value (str):
 Cookie value
 expires (datetime): Specifies when the cookie should expire. By
 default, cookies expire when the user agent exits.
 max_age (int): Defines the lifetime of the cookie in seconds.
 After the specified number of seconds elapse, the client
 should discard the cookie. Coercion to `int` is attempted
 if provided with `float` or `str`.
 domain (str): Specifies the domain for which the cookie is valid.
 An explicitly specified domain must always start with a dot.
 A value of 0 means the cookie should be discarded immediately.
 path (str): Specifies the subset of URLs to
 which this cookie applies.
 secure (bool): Direct the client to only return the cookie in
 subsequent requests if they are made over HTTPS
 (default: ``True``). This prevents attackers from reading
 sensitive cookie data. Note that for the `secure` cookie
 attribute to be effective, your application will need to
 enforce HTTPS. See also: `RFC 6265, Section 4.1.2.5`_.
 http_only (bool): Direct the client to only transfer the cookie
 with unscripted HTTP requests (default: ``True``). This is
 intended to mitigate some forms of cross-site scripting.

 Raises:
 KeyError: `name` is not a valid cookie name.
 ValueError: `value` is not a valid cookie value.

 .. _RFC 6265:
 http://tools.ietf.org/html/rfc6265

 .. _RFC 6265, Section 4.1.2.5:
 https://tools.ietf.org/html/rfc6265#section-4.1.2.5

 """

 if not is_ascii_encodable(name):
 raise KeyError('"name" is not ascii encodable')
 if not is_ascii_encodable(value):
 raise ValueError('"value" is not ascii encodable')

 if PY2:
 name = str(name)
 value = str(value)

 if self._cookies is None:
 self._cookies = SimpleCookie()

 try:
 self._cookies[name] = value
 except CookieError as e: # pragma: no cover
 # NOTE(tbug): we raise a KeyError here, to avoid leaking
 # the CookieError to the user. SimpleCookie (well, BaseCookie)
 # only throws CookieError on issues with the cookie key
 raise KeyError(str(e))

 if expires:
 # set Expires on cookie. Format is Wdy, DD Mon YYYY HH:MM:SS GMT

 # NOTE(tbug): we never actually need to
 # know that GMT is named GMT when formatting cookies.
 # It is a function call less to just write "GMT" in the fmt string:
 fmt = '%a, %d %b %Y %H:%M:%S GMT'
 if expires.tzinfo is None:
 # naive
 self._cookies[name]['expires'] = expires.strftime(fmt)
 else:
 # aware
 gmt_expires = expires.astimezone(GMT_TIMEZONE)
 self._cookies[name]['expires'] = gmt_expires.strftime(fmt)

 if max_age:
 # RFC 6265 section 5.2.2 says about the max-age value:
 # "If the remainder of attribute-value contains a non-DIGIT
 # character, ignore the cookie-av."
 # That is, RFC-compliant response parsers will ignore the max-age
 # attribute if the value contains a dot, as in floating point
 # numbers. Therefore, attempt to convert the value to an integer.
 self._cookies[name]['max-age'] = int(max_age)

 if domain:
 self._cookies[name]['domain'] = domain

 if path:
 self._cookies[name]['path'] = path

 if secure:
 self._cookies[name]['secure'] = secure

 if http_only:
 self._cookies[name]['httponly'] = http_only

[docs] def unset_cookie(self, name):
 """Unset a cookie in the response

 Note:
 This will clear the contents of the cookie, and instruct
 the browser to immediately expire its own copy of the
 cookie, if any.
 """
 if self._cookies is None:
 self._cookies = SimpleCookie()

 self._cookies[name] = ''

 # NOTE(Freezerburn): SimpleCookie apparently special cases the
 # expires attribute to automatically use strftime and set the
 # time as a delta from the current time. We use -1 here to
 # basically tell the browser to immediately expire the cookie,
 # thus removing it from future request objects.
 self._cookies[name]['expires'] = -1

[docs] def get_header(self, name):
 """Retrieve the raw string value for the given header.

 Args:
 name (str): Header name, case-insensitive. Must be of type ``str``
 or ``StringType``, and only character values 0x00 through 0xFF
 may be used on platforms that use wide characters.

 Returns:
 str: The header's value if set, otherwise ``None``.
 """
 return self._headers.get(name.lower(), None)

[docs] def set_header(self, name, value):
 """Set a header for this response to a given value.

 Warning:
 Calling this method overwrites the existing value, if any.

 Warning:
 For setting cookies, see instead :meth:`~.set_cookie`

 Args:
 name (str): Header name (case-insensitive). The restrictions
 noted below for the header's value also apply here.
 value (str): Value for the header. Must be of type ``str`` or
 ``StringType`` and contain only ISO-8859-1 characters.
 Under Python 2.x, the ``unicode`` type is also accepted,
 although such strings are also limited to ISO-8859-1.
 """
 name, value = self._encode_header(name, value)

 # NOTE(kgriffs): normalize name by lowercasing it
 self._headers[name.lower()] = value

[docs] def append_header(self, name, value):
 """Set or append a header for this response.

 Warning:
 If the header already exists, the new value will be appended
 to it, delimited by a comma. Most header specifications support
 this format, Set-Cookie being the notable exceptions.

 Warning:
 For setting cookies, see :py:meth:`~.set_cookie`

 Args:
 name (str): Header name (case-insensitive). The restrictions
 noted below for the header's value also apply here.
 value (str): Value for the header. Must be of type ``str`` or
 ``StringType`` and contain only ISO-8859-1 characters.
 Under Python 2.x, the ``unicode`` type is also accepted,
 although such strings are also limited to ISO-8859-1.

 """
 name, value = self._encode_header(name, value)

 name = name.lower()
 if name in self._headers:
 value = self._headers[name] + ',' + value

 self._headers[name] = value

[docs] def set_headers(self, headers):
 """Set several headers at once.

 Warning:
 Calling this method overwrites existing values, if any.

 Args:
 headers (dict or list): A dictionary of header names and values
 to set, or a ``list`` of (*name*, *value*) tuples. Both *name*
 and *value* must be of type ``str`` or ``StringType`` and
 contain only ISO-8859-1 characters. Under Python 2.x, the
 ``unicode`` type is also accepted, although such strings are
 also limited to ISO-8859-1.

 Note:
 Falcon can process a list of tuples slightly faster
 than a dict.

 Raises:
 ValueError: `headers` was not a ``dict`` or ``list`` of ``tuple``.

 """

 if isinstance(headers, dict):
 headers = headers.items()

 # NOTE(kgriffs): We can't use dict.update because we have to
 # normalize the header names.
 _headers = self._headers
 for name, value in headers:
 name, value = self._encode_header(name, value)
 _headers[name.lower()] = value

[docs] def add_link(self, target, rel, title=None, title_star=None,
 anchor=None, hreflang=None, type_hint=None):
 """
 Add a link header to the response.

 See also: https://tools.ietf.org/html/rfc5988

 Note:
 Calling this method repeatedly will cause each link to be
 appended to the Link header value, separated by commas.

 Note:
 So-called "link-extension" elements, as defined by RFC 5988,
 are not yet supported. See also Issue #288.

 Args:
 target (str): Target IRI for the resource identified by the
 link. Will be converted to a URI, if necessary, per
 RFC 3987, Section 3.1.
 rel (str): Relation type of the link, such as "next" or
 "bookmark". See also http://goo.gl/618GHr for a list
 of registered link relation types.

 Kwargs:
 title (str): Human-readable label for the destination of
 the link (default ``None``). If the title includes non-ASCII
 characters, you will need to use `title_star` instead, or
 provide both a US-ASCII version using `title` and a
 Unicode version using `title_star`.
 title_star (tuple of str): Localized title describing the
 destination of the link (default ``None``). The value must be a
 two-member tuple in the form of (*language-tag*, *text*),
 where *language-tag* is a standard language identifier as
 defined in RFC 5646, Section 2.1, and *text* is a Unicode
 string.

 Note:
 language-tag may be an empty string, in which case the
 client will assume the language from the general context
 of the current request.

 Note:
 text will always be encoded as UTF-8. If the string
 contains non-ASCII characters, it should be passed as
 a ``unicode`` type string (requires the 'u' prefix in
 Python 2).

 anchor (str): Override the context IRI with a different URI
 (default None). By default, the context IRI for the link is
 simply the IRI of the requested resource. The value
 provided may be a relative URI.
 hreflang (str or iterable): Either a single *language-tag*, or
 a ``list`` or ``tuple`` of such tags to provide a hint to the
 client as to the language of the result of following the link.
 A list of tags may be given in order to indicate to the
 client that the target resource is available in multiple
 languages.
 type_hint(str): Provides a hint as to the media type of the
 result of dereferencing the link (default ``None``). As noted
 in RFC 5988, this is only a hint and does not override the
 Content-Type header returned when the link is followed.

 """

 # PERF(kgriffs): Heuristic to detect possiblity of an extension
 # relation type, in which case it will be a URL that may contain
 # reserved characters. Otherwise, don't waste time running the
 # string through uri.encode
 #
 # Example values for rel:
 #
 # "next"
 # "http://example.com/ext-type"
 # "https://example.com/ext-type"
 # "alternate http://example.com/ext-type"
 # "http://example.com/ext-type alternate"
 #
 if '//' in rel:
 if ' ' in rel:
 rel = ('"' +
 ' '.join([uri_encode(r) for r in rel.split()]) +
 '"')
 else:
 rel = '"' + uri_encode(rel) + '"'

 value = '<' + uri_encode(target) + '>; rel=' + rel

 if title is not None:
 value += '; title="' + title + '"'

 if title_star is not None:
 value += ("; title*=UTF-8'" + title_star[0] + "'" +
 uri_encode_value(title_star[1]))

 if type_hint is not None:
 value += '; type="' + type_hint + '"'

 if hreflang is not None:
 if isinstance(hreflang, STRING_TYPES):
 value += '; hreflang=' + hreflang
 else:
 value += '; '
 value += '; '.join(['hreflang=' + lang for lang in hreflang])

 if anchor is not None:
 value += '; anchor="' + uri_encode(anchor) + '"'

 _headers = self._headers
 if 'link' in _headers:
 _headers['link'] += ', ' + value
 else:
 _headers['link'] = value

 cache_control = header_property(
 'Cache-Control',
 """Sets the Cache-Control header.

 Used to set a list of cache directives to use as the value of the
 Cache-Control header. The list will be joined with ", " to produce
 the value for the header.

 """,
 lambda v: ', '.join(v))

 content_location = header_property(
 'Content-Location',
 'Sets the Content-Location header.',
 uri_encode)

 content_range = header_property(
 'Content-Range',
 """A tuple to use in constructing a value for the Content-Range header.

 The tuple has the form (*start*, *end*, *length*, [*unit*]), where *start* and
 end designate the range (inclusive), and *length* is the
 total length, or '*' if unknown. You may pass ``int``'s for
 these numbers (no need to convert to ``str`` beforehand). The optional value
 unit describes the range unit and defaults to 'bytes'

 Note:
 You only need to use the alternate form, 'bytes */1234', for
 responses that use the status '416 Range Not Satisfiable'. In this
 case, raising ``falcon.HTTPRangeNotSatisfiable`` will do the right
 thing.

 See also: http://goo.gl/Iglhp
 """,
 format_range)

 content_type = header_property(
 'Content-Type',
 'Sets the Content-Type header.')

 etag = header_property(
 'ETag',
 'Sets the ETag header.')

 last_modified = header_property(
 'Last-Modified',
 """Sets the Last-Modified header. Set to a ``datetime`` (UTC) instance.

 Note:
 Falcon will format the ``datetime`` as an HTTP date string.
 """,
 dt_to_http)

 location = header_property(
 'Location',
 'Sets the Location header.',
 uri_encode)

 retry_after = header_property(
 'Retry-After',
 """Sets the Retry-After header.

 The expected value is an integral number of seconds to use as the
 value for the header. The HTTP-date syntax is not supported.
 """,
 str)

 vary = header_property(
 'Vary',
 """Value to use for the Vary header.

 Set this property to an iterable of header names. For a single
 asterisk or field value, simply pass a single-element ``list`` or
 ``tuple``.

 "Tells downstream proxies how to match future request headers
 to decide whether the cached response can be used rather than
 requesting a fresh one from the origin server."

 (Wikipedia)

 See also: http://goo.gl/NGHdL

 """,
 lambda v: ', '.join(v))

 def _encode_header(self, name, value, py2=PY2):
 if py2:
 if isinstance(name, unicode):
 name = name.encode('ISO-8859-1')

 if isinstance(value, unicode):
 value = value.encode('ISO-8859-1')

 return name, value

 def _wsgi_headers(self, media_type=None, py2=PY2):
 """Convert headers into the format expected by WSGI servers.

 Args:
 media_type: Default media type to use for the Content-Type
 header if the header was not set explicitly (default ``None``).

 """

 headers = self._headers

 # PERF(kgriffs): Using "in" like this is faster than using
 # dict.setdefault (tested on py27).
 set_content_type = (media_type is not None and
 'content-type' not in headers)

 if set_content_type:
 headers['content-type'] = media_type

 if py2:
 # PERF(kgriffs): Don't create an extra list object if
 # it isn't needed.
 items = headers.items()
 else:
 items = list(headers.items())

 if self._cookies is not None:
 # PERF(tbug):
 # The below implementation is ~23% faster than
 # the alternative:
 #
 # self._cookies.output().split("\\r\\n")
 #
 # Even without the .split("\\r\\n"), the below
 # is still ~17% faster, so don't use .output()
 items += [('set-cookie', c.OutputString())
 for c in self._cookies.values()]
 return items

 Created using Sphinx 1.3.5.

_static/comment-bright.png

_modules/falcon/http_status.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.http_status

Copyright 2015 by Hurricane Labs LLC
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

[docs]class HTTPStatus(Exception):
 """Represents a generic HTTP status.

 Raise an instance of this class from a hook, middleware, or
 responder to short-circuit request processing in a manner similar
 to ``falcon.HTTPError``, but for non-error status codes.

 Attributes:
 status (str): HTTP status line, e.g. '748 Confounded by Ponies'.
 headers (dict): Extra headers to add to the response.
 body (str or unicode): String representing response content. If
 Unicode, Falcon will encode as UTF-8 in the response.

 Args:
 status (str): HTTP status code and text, such as
 '748 Confounded by Ponies'.
 headers (dict): Extra headers to add to the response.
 body (str or unicode): String representing response content. If
 Unicode, Falcon will encode as UTF-8 in the response.
 """

 __slots__ = (
 'status',
 'headers',
 'body'
)

 def __init__(self, status, headers=None, body=None):
 self.status = status
 self.headers = headers
 self.body = body

 Created using Sphinx 1.3.5.

_modules/falcon/http_error.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.http_error

Copyright 2013 by Rackspace Hosting, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import json
import xml.etree.ElementTree as et

try:
 from collections import OrderedDict
except ImportError:
 OrderedDict = dict

from falcon.util import uri

[docs]class HTTPError(Exception):
 """Represents a generic HTTP error.

 Raise this or a child class to have Falcon automagically return pretty
 error responses (with an appropriate HTTP status code) to the client
 when something goes wrong.

 Attributes:
 status (str): HTTP status line, e.g. '748 Confounded by Ponies'.
 has_representation (bool): Read-only property that determines
 whether error details will be serialized when composing
 the HTTP response. In ``HTTPError`` this property always
 returns ``True``, but child classes may override it
 in order to return ``False`` when an empty HTTP body is desired.
 See also the ``falcon.http_error.NoRepresentation`` mixin.
 title (str): Error title to send to the client. Will be ``None`` if
 the error should result in an HTTP response with an empty body.
 description (str): Description of the error to send to the client.
 headers (dict): Extra headers to add to the response.
 link (str): An href that the client can provide to the user for
 getting help.
 code (int): An internal application code that a user can reference when
 requesting support for the error.

 Args:
 status (str): HTTP status code and text, such as "400 Bad Request"

 Keyword Args:
 title (str): Human-friendly error title (default ``None``).
 description (str): Human-friendly description of the error, along with
 a helpful suggestion or two (default ``None``).
 headers (dict or list): A ``dict`` of header names and values
 to set, or a ``list`` of (*name*, *value*) tuples. Both *name* and
 value must be of type ``str`` or ``StringType``, and only
 character values 0x00 through 0xFF may be used on platforms that
 use wide characters.

 Note:
 The Content-Type header, if present, will be overridden. If
 you wish to return custom error messages, you can create
 your own HTTP error class, and install an error handler
 to convert it into an appropriate HTTP response for the
 client

 Note:
 Falcon can process a list of ``tuple`` slightly faster
 than a ``dict``.

 headers (dict): Extra headers to return in the
 response to the client (default ``None``).
 href (str): A URL someone can visit to find out more information
 (default ``None``). Unicode characters are percent-encoded.
 href_text (str): If href is given, use this as the friendly
 title/description for the link (defaults to "API documentation
 for this error").
 code (int): An internal code that customers can reference in their
 support request or to help them when searching for knowledge
 base articles related to this error (default ``None``).
 """

 __slots__ = (
 'status',
 'title',
 'description',
 'headers',
 'link',
 'code',
)

 def __init__(self, status, title=None, description=None, headers=None,
 href=None, href_text=None, code=None):
 self.status = status
 self.title = title
 self.description = description
 self.headers = headers
 self.code = code

 if href:
 link = self.link = OrderedDict()
 link['text'] = (href_text or 'Documentation related to this error')
 link['href'] = uri.encode(href)
 link['rel'] = 'help'
 else:
 self.link = None

 @property
 def has_representation(self):
 return True

[docs] def to_dict(self, obj_type=dict):
 """Returns a basic dictionary representing the error.

 This method can be useful when serializing the error to hash-like
 media types, such as YAML, JSON, and MessagePack.

 Args:
 obj_type: A dict-like type that will be used to store the
 error information (default ``dict``).

 Returns:
 A dictionary populated with the error's title, description, etc.

 """

 assert self.has_representation

 obj = obj_type()

 if self.title is not None:
 obj['title'] = self.title

 if self.description is not None:
 obj['description'] = self.description

 if self.code is not None:
 obj['code'] = self.code

 if self.link is not None:
 obj['link'] = self.link

 return obj

[docs] def to_json(self):
 """Returns a pretty-printed JSON representation of the error.

 Returns:
 A JSON document for the error.

 """

 obj = self.to_dict(OrderedDict)
 return json.dumps(obj, indent=4, separators=(',', ': '),
 ensure_ascii=False)

[docs] def to_xml(self):
 """Returns an XML-encoded representation of the error.

 Returns:
 An XML document for the error.

 """

 assert self.has_representation

 error_element = et.Element('error')

 if self.title is not None:
 et.SubElement(error_element, 'title').text = self.title

 if self.description is not None:
 et.SubElement(error_element, 'description').text = self.description

 if self.code is not None:
 et.SubElement(error_element, 'code').text = str(self.code)

 if self.link is not None:
 link_element = et.SubElement(error_element, 'link')

 for key in ('text', 'href', 'rel'):
 et.SubElement(link_element, key).text = self.link[key]

 return (b'<?xml version="1.0" encoding="UTF-8"?>' +
 et.tostring(error_element, encoding='utf-8'))

[docs]class NoRepresentation(object):
 """Mixin for ``HTTPError`` child classes that have no representation.

 This class can be mixed in when inheriting from ``HTTPError``, in order
 to override the `has_representation` property such that it always
 returns ``False``. This, in turn, will cause Falcon to return an empty
 response body to the client.

 You can use this mixin when defining errors that either should not have
 a body (as dictated by HTTP standards or common practice), or in the
 case that a detailed error response may leak information to an attacker.

 Note:
 This mixin class must appear before ``HTTPError`` in the base class
 list when defining the child; otherwise, it will not override the
 `has_representation` property as expected.

 """

 @property
 def has_representation(self):
 return False

class OptionalRepresentation(object):
 """Mixin for ``HTTPError`` child classes that may have a representation.

 This class can be mixed in when inheriting from ``HTTPError`` in order
 to override the `has_representation` property, such that it will
 return ``False`` when the error instance has no description
 (i.e., the `description` kwarg was not set).

 You can use this mixin when defining errors that do not include
 a body in the HTTP response by default, serializing details only when
 the web developer provides a description of the error.

 Note:
 This mixin class must appear before ``HTTPError`` in the base class
 list when defining the child; otherwise, it will not override the
 `has_representation` property as expected.

 """
 @property
 def has_representation(self):
 return super(OptionalRepresentation, self).description is not None

 Created using Sphinx 1.3.5.

_modules/falcon/errors.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.errors

Copyright 2013 by Rackspace Hosting, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

from datetime import datetime

from falcon.http_error import HTTPError, NoRepresentation, \
 OptionalRepresentation
import falcon.status_codes as status
from falcon import util

[docs]class HTTPBadRequest(HTTPError):
 """400 Bad Request.

 The request could not be understood by the server due to malformed
 syntax. The client SHOULD NOT repeat the request without
 modifications. (RFC 2616)

 Args:
 title (str): Error title (e.g., 'TTL Out of Range').
 description (str): Human-friendly description of the error, along with
 a helpful suggestion or two.
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, title, description, **kwargs):
 super(HTTPBadRequest, self).__init__(status.HTTP_400, title,
 description, **kwargs)

[docs]class HTTPUnauthorized(HTTPError):
 """401 Unauthorized.

 Use when authentication is required, and the provided credentials are
 not valid, or no credentials were provided in the first place.

 Args:
 title (str): Error title (e.g., 'Authentication Required').
 description (str): Human-friendly description of the error, along with
 a helpful suggestion or two.
 challenges (iterable of str): One or more authentication
 challenges to use as the value of the WWW-Authenticate header in
 the response. See also:
 http://tools.ietf.org/html/rfc7235#section-2.1
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, title, description, challenges, **kwargs):
 headers = kwargs.setdefault('headers', {})

 if challenges:
 headers['WWW-Authenticate'] = ', '.join(challenges)

 super(HTTPUnauthorized, self).__init__(status.HTTP_401, title,
 description, **kwargs)

[docs]class HTTPForbidden(HTTPError):
 """403 Forbidden.

 Use when the client's credentials are good, but they do not have permission
 to access the requested resource.

 If the request method was not HEAD and the server wishes to make
 public why the request has not been fulfilled, it SHOULD describe the
 reason for the refusal in the entity. If the server does not wish to
 make this information available to the client, the status code 404
 (Not Found) can be used instead. (RFC 2616)

 Args:
 title (str): Error title (e.g., 'Permission Denied').
 description (str): Human-friendly description of the error, along with
 a helpful suggestion or two.
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, title, description, **kwargs):
 super(HTTPForbidden, self).__init__(status.HTTP_403, title,
 description, **kwargs)

[docs]class HTTPNotFound(OptionalRepresentation, HTTPError):
 """404 Not Found.

 Use this when the URL path does not map to an existing resource, or you
 do not wish to disclose exactly why a request was refused.

 """

 def __init__(self, **kwargs):
 super(HTTPNotFound, self).__init__(status.HTTP_404, **kwargs)

[docs]class HTTPMethodNotAllowed(OptionalRepresentation, HTTPError):
 """405 Method Not Allowed.

 The method specified in the Request-Line is not allowed for the
 resource identified by the Request-URI. The response MUST include an
 Allow header containing a list of valid methods for the requested
 resource. (RFC 2616)

 Args:
 allowed_methods (list of str): Allowed HTTP methods for this
 resource (e.g., ``['GET', 'POST', 'HEAD']``).

 """

 def __init__(self, allowed_methods, **kwargs):
 new_headers = {'Allow': ', '.join(allowed_methods)}
 super(HTTPMethodNotAllowed, self).__init__(status.HTTP_405,
 **kwargs)
 if not self.headers:
 self.headers = {}

 self.headers.update(new_headers)

[docs]class HTTPNotAcceptable(HTTPError):
 """406 Not Acceptable.

 The client requested a resource in a representation that is not
 supported by the server. The client must indicate a supported
 media type in the Accept header.

 The resource identified by the request is only capable of generating
 response entities which have content characteristics not acceptable
 according to the accept headers sent in the request. (RFC 2616)

 Args:
 description (str): Human-friendly description of the error, along with
 a helpful suggestion or two.
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, description, **kwargs):
 super(HTTPNotAcceptable, self).__init__(status.HTTP_406,
 'Media type not acceptable',
 description, **kwargs)

[docs]class HTTPConflict(HTTPError):
 """409 Conflict.

 The request could not be completed due to a conflict with the current
 state of the resource. This code is only allowed in situations where
 it is expected that the user might be able to resolve the conflict
 and resubmit the request. The response body SHOULD include enough
 information for the user to recognize the source of the conflict.
 Ideally, the response entity would include enough information for the
 user or user agent to fix the problem; however, that might not be
 possible and is not required.

 Conflicts are most likely to occur in response to a PUT request. For
 example, if versioning were being used and the entity being PUT
 included changes to a resource which conflict with those made by an
 earlier (third-party) request, the server might use the 409 response
 to indicate that it can't complete the request. In this case, the
 response entity would likely contain a list of the differences
 between the two versions in a format defined by the response
 Content-Type.

 (RFC 2616)

 Args:
 title (str): Error title (e.g., 'Editing Conflict').
 description (str): Human-friendly description of the error, along with
 a helpful suggestion or two.
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, title, description, **kwargs):
 super(HTTPConflict, self).__init__(status.HTTP_409, title,
 description, **kwargs)

[docs]class HTTPLengthRequired(HTTPError):
 """411 Length Required.

 The server refuses to accept the request without a defined
 Content-Length. The client MAY repeat the request if it adds a
 valid Content-Length header field containing the length of the
 message-body in the request message. (RFC 2616)

 Args:
 title (str): Error title (e.g., 'Missing Content-Length').
 description (str): Human-friendly description of the error, along with
 a helpful suggestion or two.
 kwargs (optional): Same as for ``HTTPError``.

 """
 def __init__(self, title, description, **kwargs):
 super(HTTPLengthRequired, self).__init__(status.HTTP_411,
 title, description, **kwargs)

[docs]class HTTPPreconditionFailed(HTTPError):
 """412 Precondition Failed.

 The precondition given in one or more of the request-header fields
 evaluated to false when it was tested on the server. This response
 code allows the client to place preconditions on the current resource
 metainformation (header field data) and thus prevent the requested
 method from being applied to a resource other than the one intended.
 (RFC 2616)

 Args:
 title (str): Error title (e.g., 'Image Not Modified').
 description (str): Human-friendly description of the error, along with
 a helpful suggestion or two.
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, title, description, **kwargs):
 super(HTTPPreconditionFailed, self).__init__(status.HTTP_412, title,
 description, **kwargs)

class HTTPRequestEntityTooLarge(HTTPError):
 """413 Request Entity Too Large.

 The server is refusing to process a request because the request
 entity is larger than the server is willing or able to process. The
 server MAY close the connection to prevent the client from continuing
 the request.

 If the condition is temporary, the server SHOULD include a Retry-
 After header field to indicate that it is temporary and after what
 time the client MAY try again.

 (RFC 2616)

 Args:
 title (str): Error title (e.g., 'Request Body Limit Exceeded').
 description (str): Human-friendly description of the error, along with
 a helpful suggestion or two.
 retry_after (datetime or int, optional): Value for the Retry-After
 header. If a ``datetime`` object, will serialize as an HTTP date.
 Otherwise, a non-negative ``int`` is expected, representing the
 number of seconds to wait.
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, title, description, retry_after=None, **kwargs):
 headers = kwargs.setdefault('headers', {})

 if isinstance(retry_after, datetime):
 headers['Retry-After'] = util.dt_to_http(retry_after)
 elif retry_after is not None:
 headers['Retry-After'] = str(retry_after)

 super(HTTPRequestEntityTooLarge, self).__init__(status.HTTP_413,
 title,
 description,
 **kwargs)

[docs]class HTTPUnsupportedMediaType(HTTPError):
 """415 Unsupported Media Type.

 The client is trying to submit a resource encoded as an Internet media
 type that the server does not support.

 Args:
 description (str): Human-friendly description of the error, along with
 a helpful suggestion or two.
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, description, **kwargs):
 super(HTTPUnsupportedMediaType, self).__init__(
 status.HTTP_415, 'Unsupported media type', description, **kwargs)

[docs]class HTTPRangeNotSatisfiable(NoRepresentation, HTTPError):
 """416 Range Not Satisfiable.

 The requested range is not valid. See also: http://goo.gl/Qsa4EF

 Args:
 resource_length: The maximum value for the last-byte-pos of a range
 request. Used to set the Content-Range header.
 """

 def __init__(self, resource_length):
 headers = {'Content-Range': 'bytes */' + str(resource_length)}
 super(HTTPRangeNotSatisfiable, self).__init__(status.HTTP_416,
 headers=headers)

[docs]class HTTPUnprocessableEntity(HTTPError):
 """422 Unprocessable Entity.

 The request was well-formed but was unable to be followed due to semantic
 errors. See also: http://www.ietf.org/rfc/rfc4918.

 Args:
 title (str): Error title (e.g., 'Missing title field').
 description (str): Human-friendly description of the error, along with
 a helpful suggestion or two.
 kwargs (optional): Same as for ``HTTPError``.
 """

 def __init__(self, title, description, **kwargs):
 super(HTTPUnprocessableEntity, self).__init__(status.HTTP_422, title,
 description, **kwargs)

[docs]class HTTPTooManyRequests(HTTPError):
 """429 Too Many Requests.

 The user has sent too many requests in a given amount of time
 ("rate limiting").

 The response representations SHOULD include details explaining the
 condition, and MAY include a Retry-After header indicating how long
 to wait before making a new request.

 (RFC 6585)

 Args:
 title (str): Error title (e.g., 'Too Many Requests').
 description (str): Human-friendly description of the rate limit that
 was exceeded.
 retry_after (datetime or int, optional): Value for the Retry-After
 header. If a ``datetime`` object, will serialize as an HTTP date.
 Otherwise, a non-negative ``int`` is expected, representing the
 number of seconds to wait.
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, title, description, retry_after=None, **kwargs):
 headers = kwargs.setdefault('headers', {})

 if isinstance(retry_after, datetime):
 headers['Retry-After'] = util.dt_to_http(retry_after)
 elif retry_after is not None:
 headers['Retry-After'] = str(retry_after)

 super(HTTPTooManyRequests, self).__init__(status.HTTP_429,
 title,
 description,
 **kwargs)

[docs]class HTTPUnavailableForLegalReasons(OptionalRepresentation, HTTPError):
 """451 Unavailable For Legal Reasons.

 This status code indicates that the server is denying access to the
 resource as a consequence of a legal demand.

 See also:
 https://datatracker.ietf.org/doc/draft-ietf-httpbis-legally-restricted-status/

 Args:
 title (str): Error title (e.g., 'Legal reason: <reason>').
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, title, **kwargs):
 super(HTTPUnavailableForLegalReasons, self).__init__(status.HTTP_451,
 title, **kwargs)

[docs]class HTTPInternalServerError(HTTPError):
 """500 Internal Server Error.

 Args:
 title (str): Error title (e.g., 'This Should Never Happen').
 description (str): Human-friendly description of the error, along with
 a helpful suggestion or two.
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, title, description, **kwargs):
 super(HTTPInternalServerError, self).__init__(status.HTTP_500, title,
 description, **kwargs)

[docs]class HTTPBadGateway(HTTPError):
 """502 Bad Gateway.

 Args:
 title (str): Error title, for
 example: 'Upstream Server is Unavailable'.
 description (str): Human-friendly description of the error, along with
 a helpful suggestion or two.
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, title, description, **kwargs):
 super(HTTPBadGateway, self).__init__(status.HTTP_502, title,
 description, **kwargs)

[docs]class HTTPServiceUnavailable(HTTPError):
 """503 Service Unavailable.

 Args:
 title (str): Error title (e.g., 'Temporarily Unavailable').
 description (str): Human-friendly description of the error, along with
 a helpful suggestion or two.
 retry_after (datetime or int): Value for the Retry-After header. If a
 ``datetime`` object, will serialize as an HTTP date. Otherwise,
 a non-negative ``int`` is expected, representing the number of
 seconds to wait.
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, title, description, retry_after, **kwargs):
 headers = kwargs.setdefault('headers', {})

 if isinstance(retry_after, datetime):
 headers['Retry-After'] = util.dt_to_http(retry_after)
 else:
 headers['Retry-After'] = str(retry_after)

 super(HTTPServiceUnavailable, self).__init__(status.HTTP_503,
 title,
 description,
 **kwargs)

[docs]class HTTPInvalidHeader(HTTPBadRequest):
 """A header in the request is invalid. Inherits from ``HTTPBadRequest``.

 Args:
 msg (str): A description of why the value is invalid.
 header_name (str): The name of the header.
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, msg, header_name, **kwargs):
 description = ('The value provided for the {0} header is '
 'invalid. {1}')
 description = description.format(header_name, msg)

 super(HTTPInvalidHeader, self).__init__('Invalid header value',
 description, **kwargs)

[docs]class HTTPMissingHeader(HTTPBadRequest):
 """A header is missing from the request. Inherits from ``HTTPBadRequest``.

 Args:
 header_name (str): The name of the header.
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, header_name, **kwargs):
 description = ('The {0} header is required.')
 description = description.format(header_name)

 super(HTTPMissingHeader, self).__init__('Missing header value',
 description, **kwargs)

[docs]class HTTPInvalidParam(HTTPBadRequest):
 """A parameter in the request is invalid. Inherits from ``HTTPBadRequest``.

 This error may refer to a parameter in a query string, form, or
 document that was submitted with the request.

 Args:
 msg (str): A description of the invalid parameter.
 param_name (str): The name of the parameter.
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, msg, param_name, **kwargs):
 description = 'The "{0}" parameter is invalid. {1}'
 description = description.format(param_name, msg)

 super(HTTPInvalidParam, self).__init__('Invalid parameter',
 description, **kwargs)

[docs]class HTTPMissingParam(HTTPBadRequest):
 """A parameter is missing from the request. Inherits from ``HTTPBadRequest``.

 This error may refer to a parameter in a query string, form, or
 document that was submitted with the request.

 Args:
 param_name (str): The name of the parameter.
 kwargs (optional): Same as for ``HTTPError``.

 """

 def __init__(self, param_name, **kwargs):
 description = 'The "{0}" parameter is required.'
 description = description.format(param_name)

 super(HTTPMissingParam, self).__init__('Missing parameter',
 description, **kwargs)

 Created using Sphinx 1.3.5.

_static/comment-close.png

_modules/falcon/routing/compiled.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.routing.compiled

Copyright 2013 by Richard Olsson
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import re

TAB_STR = ' ' * 4

[docs]class CompiledRouter(object):
 """Fast URI router which compiles its routing logic to Python code.

 Generally you do not need to use this router class directly, as an
 instance is created by default when the falcon.API class is initialized.

 The router treats URI paths as a tree of URI segments and searches by
 checking the URI one segment at a time. Instead of interpreting the route
 tree for each look-up, it generates inlined, bespoke Python code to
 perform the search, then compiles that code. This makes the route
 processing quite fast.
 """

 def __init__(self):
 self._roots = []
 self._find = self._compile()
 self._code_lines = None
 self._src = None
 self._expressions = None
 self._return_values = None

[docs] def add_route(self, uri_template, method_map, resource):
 """Adds a route between URI path template and resource."""
 # Can't start with a number, since these eventually get passed as
 # args to on_* responders
 if re.search('{\d', uri_template):
 raise ValueError('Field names may not start with a digit.')

 if re.search('\s', uri_template):
 raise ValueError('URI templates may not include whitespace.')

 path = uri_template.strip('/').split('/')

 def insert(nodes, path_index=0):
 for node in nodes:
 segment = path[path_index]
 if node.matches(segment):
 path_index += 1
 if path_index == len(path):
 # NOTE(kgriffs): Override previous node
 node.method_map = method_map
 node.resource = resource
 else:
 insert(node.children, path_index)

 return

 if node.conflicts_with(segment):
 raise ValueError('The URI template for this route '
 "conflicts with another route's "
 'template.')

 # NOTE(richardolsson): If we got this far, the node doesn't already
 # exist and needs to be created. This builds a new branch of the
 # routing tree recursively until it reaches the new node leaf.
 new_node = CompiledRouterNode(path[path_index])
 nodes.append(new_node)
 if path_index == len(path) - 1:
 new_node.method_map = method_map
 new_node.resource = resource
 else:
 insert(new_node.children, path_index + 1)

 insert(self._roots)
 self._find = self._compile()

[docs] def find(self, uri):
 """Finds resource and method map for a URI, or returns None."""
 path = uri.lstrip('/').split('/')
 params = {}
 node = self._find(path, self._return_values, self._expressions, params)

 if node is not None:
 return node.resource, node.method_map, params
 else:
 return None

 def _compile_tree(self, nodes, indent=1, level=0, fast_return=True):
 """Generates Python code for a routing tree or subtree."""

 def line(text, indent_offset=0):
 pad = TAB_STR * (indent + indent_offset)
 self._code_lines.append(pad + text)

 # NOTE(kgriffs): Base case
 if not nodes:
 return

 line('if path_len > %d:' % level)
 indent += 1

 level_indent = indent
 found_simple = False

 # NOTE(kgriffs & philiptzou): Sort nodes in this sequence:
 # static nodes(0), complex var nodes(1) and simple var nodes(2).
 # so that none of them get masked.
 nodes = sorted(
 nodes, key=lambda node: node.is_var + (node.is_var and
 not node.is_complex))

 # NOTE(kgriffs): Down to this branch in the tree, we can do a
 # fast 'return None'. See if the nodes at this branch are
 # all still simple, meaning there is only one possible path.
 if fast_return:
 if len(nodes) > 1:
 # NOTE(kgriffs): There's the possibility of more than
 # one path.
 var_nodes = [node for node in nodes if node.is_var]
 found_var_nodes = bool(var_nodes)

 fast_return = not found_var_nodes

 for node in nodes:
 if node.is_var:
 if node.is_complex:
 # NOTE(richardolsson): Complex nodes are nodes which
 # contain anything more than a single literal or variable,
 # and they need to be checked using a pre-compiled regular
 # expression.
 expression_idx = len(self._expressions)
 self._expressions.append(node.var_regex)

 line('match = expressions[%d].match(path[%d]) # %s' % (
 expression_idx, level, node.var_regex.pattern))

 line('if match is not None:')
 indent += 1
 line('params.update(match.groupdict())')

 else:
 # NOTE(kgriffs): Simple nodes just capture the entire path
 # segment as the value for the param.
 line('params["%s"] = path[%d]' % (node.var_name, level))

 # NOTE(kgriffs): We don't allow multiple simple var nodes
 # to exist at the same level, e.g.:
 #
 # /foo/{id}/bar
 # /foo/{name}/bar
 #
 assert len([_node for _node in nodes
 if _node.is_var and not _node.is_complex]) == 1
 found_simple = True

 else:
 # NOTE(kgriffs): Not a param, so must match exactly
 line('if path[%d] == "%s":' % (level, node.raw_segment))
 indent += 1

 if node.resource is not None:
 # NOTE(kgriffs): This is a valid route, so we will want to
 # return the relevant information.
 resource_idx = len(self._return_values)
 self._return_values.append(node)

 self._compile_tree(node.children, indent, level + 1, fast_return)

 if node.resource is None:
 if fast_return:
 line('return None')
 else:
 # NOTE(kgriffs): Make sure that we have consumed all of
 # the segments for the requested route; otherwise we could
 # mistakenly match "/foo/23/bar" against "/foo/{id}".
 line('if path_len == %d:' % (level + 1))
 line('return return_values[%d]' % resource_idx, 1)

 if fast_return:
 line('return None')

 indent = level_indent

 if not found_simple and fast_return:
 line('return None')

 def _compile(self):
 """Generates Python code for entire routing tree.

 The generated code is compiled and the resulting Python method is
 returned.
 """
 self._return_values = []
 self._expressions = []
 self._code_lines = [
 'def find(path, return_values, expressions, params):',
 TAB_STR + 'path_len = len(path)',
]

 self._compile_tree(self._roots)

 self._code_lines.append(
 # PERF(kgriffs): Explicit return of None is faster than implicit
 TAB_STR + 'return None'
)

 self._src = '\n'.join(self._code_lines)

 scope = {}
 exec(compile(self._src, '<string>', 'exec'), scope)

 return scope['find']

class CompiledRouterNode(object):
 """Represents a single URI segment in a URI."""

 _regex_vars = re.compile('{([-_a-zA-Z0-9]+)}')

 def __init__(self, raw_segment, method_map=None, resource=None):
 self.children = []

 self.raw_segment = raw_segment
 self.method_map = method_map
 self.resource = resource

 self.is_var = False
 self.is_complex = False
 self.var_name = None

 seg = raw_segment.replace('.', '\\.')

 matches = list(self._regex_vars.finditer(seg))
 if matches:
 self.is_var = True
 # NOTE(richardolsson): if there is a single variable and it spans
 # the entire segment, the segment is uncomplex and the variable
 # name is simply the string contained within curly braces.
 if len(matches) == 1 and matches[0].span() == (0, len(seg)):
 self.is_complex = False
 self.var_name = raw_segment[1:-1]
 else:
 # NOTE(richardolsson): Complex segments need to be converted
 # into regular expressions will be used to match and extract
 # variable values. The regular expressions contain both
 # literal spans and named group expressions for the variables.
 self.is_complex = True
 seg_fields = []
 prev_end_idx = 0
 for match in matches:
 var_start_idx, var_end_idx = match.span()
 seg_fields.append(seg[prev_end_idx:var_start_idx])

 var_name = match.groups()[0].replace('-', '_')
 seg_fields.append('(?P<%s>[^/]+)' % var_name)

 prev_end_idx = var_end_idx

 seg_fields.append(seg[prev_end_idx:])
 seg_pattern = ''.join(seg_fields)
 self.var_regex = re.compile(seg_pattern)
 else:
 self.is_var = False

 def matches(self, segment):
 """Returns True if this node matches the supplied template segment."""

 return segment == self.raw_segment

 def conflicts_with(self, segment):
 """Returns True if this node conflicts with a given template segment."""

 # NOTE(kgriffs): This method assumes that the caller has already
 # checked if the segment matches. By definition, only unmatched
 # segments may conflict, so there isn't any sense in calling
 # conflicts_with in that case.
 assert not self.matches(segment)

 # NOTE(kgriffs): Possible combinations are as follows.
 #
 # simple, simple ==> True
 # simple, complex ==> False
 # simple, string ==> False
 # complex, simple ==> False
 # complex, complex ==> (Depend)
 # complex, string ==> False
 # string, simple ==> False
 # string, complex ==> False
 # string, string ==> False
 #
 other = CompiledRouterNode(segment)

 if self.is_var:
 # NOTE(kgriffs & philiptzou): Falcon does not accept multiple
 # simple var nodes exist at the same level as following:
 #
 # /foo/{thing1}
 # /foo/{thing2}
 #
 # Nor two complex nodes like this:
 #
 # /foo/{thing1}.{ext}
 # /foo/{thing2}.{ext}
 #
 # On the other hand, those are all OK:
 #
 # /foo/{thing1}
 # /foo/all
 # /foo/{thing1}.{ext}
 # /foo/{thing2}.detail.{ext}
 #
 if self.is_complex:
 if other.is_complex:
 return (self._regex_vars.sub('v', self.raw_segment) ==
 self._regex_vars.sub('v', segment))

 return False
 else:
 return other.is_var and not other.is_complex

 # NOTE(kgriffs): If self is a static string match, then all the cases
 # for other are False, so no need to check.
 return False

 Created using Sphinx 1.3.5.

_modules/falcon/testing/test_case.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.testing.test_case

Copyright 2013 by Rackspace Hosting, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import json
import wsgiref.validate

try:
 import testtools as unittest
except ImportError: # pragma: nocover
 import unittest

import falcon
import falcon.request
from falcon.util import CaseInsensitiveDict
from falcon.testing.srmock import StartResponseMock
from falcon.testing.helpers import create_environ, get_encoding_from_headers

[docs]class Result(object):
 """Encapsulates the result of a simulated WSGI request.

 Args:
 iterable (iterable): An iterable that yields zero or more
 bytestrings, per PEP-3333
 status (str): An HTTP status string, including status code and
 reason string
 headers (list): A list of (header_name, header_value) tuples,
 per PEP-3333

 Attributes:
 status (str): HTTP status string given in the response
 status_code (int): The code portion of the HTTP status string
 headers (CaseInsensitiveDict): A case-insensitive dictionary
 containing all the headers in the response
 encoding (str): Text encoding of the response body, or ``None``
 if the encoding can not be determined.
 content (bytes): Raw response body, or ``bytes`` if the
 response body was empty.
 text (str): Decoded response body of type ``unicode``
 under Python 2.6 and 2.7, and of type ``str`` otherwise.
 Raises an error if the response encoding can not be
 determined.
 json (dict): Deserialized JSON body. Raises an error if the
 response is not JSON.
 """

 def __init__(self, iterable, status, headers):
 self._text = None

 self._content = b''.join(iterable)
 if hasattr(iterable, 'close'):
 iterable.close()

 self._status = status
 self._status_code = int(status[:3])
 self._headers = CaseInsensitiveDict(headers)

 self._encoding = get_encoding_from_headers(self._headers)

 @property
 def status(self):
 return self._status

 @property
 def status_code(self):
 return self._status_code

 @property
 def headers(self):
 return self._headers

 @property
 def encoding(self):
 return self._encoding

 @property
 def content(self):
 return self._content

 @property
 def text(self):
 if self._text is None:
 if not self.content:
 self._text = u''
 else:
 if self.encoding is None:
 msg = 'Response did not specify a content encoding'
 raise RuntimeError(msg)

 self._text = self.content.decode(self.encoding)

 return self._text

 @property
 def json(self):
 return json.loads(self.text)

[docs]class TestCase(unittest.TestCase):
 """Extends :py:mod:`unittest` to support WSGI functional testing.

 Note:
 If available, uses :py:mod:`testtools` in lieu of
 :py:mod:`unittest`.

 This base class provides some extra plumbing for unittest-style
 test cases, to help simulate WSGI calls without having to spin up
 an actual web server. Simply inherit from this class in your test
 case classes instead of :py:class:`unittest.TestCase` or
 :py:class:`testtools.TestCase`.

 Attributes:
 api_class (class): An API class to use when instantiating
 the ``api`` instance (default: :py:class:`falcon.API`)
 api (object): An API instance to target when simulating
 requests (default: ``self.api_class()``)
 """

 api_class = None

 def setUp(self):
 super(TestCase, self).setUp()

 if self.api_class is None:
 self.api = falcon.API()
 else:
 self.api = self.api_class()

 # Reset to simulate "restarting" the WSGI container
 falcon.request._maybe_wrap_wsgi_stream = True

 # NOTE(warsaw): Pythons earlier than 2.7 do not have a
 # self.assertIn() method, so use this compatibility function
 # instead.
 if not hasattr(unittest.TestCase, 'assertIn'): # pragma: nocover
 def assertIn(self, a, b):
 self.assertTrue(a in b)

[docs] def simulate_get(self, path='/', **kwargs):
 """Simulates a GET request to a WSGI application.

 Equivalent to ``simulate_request('GET', ...)``

 Args:
 path (str): The URL path to request (default: '/')

 Keyword Args:
 query_string (str): A raw query string to include in the
 request (default: ``None``)
 headers (dict): Additional headers to include in the request
 (default: ``None``)
 """
 return self.simulate_request('GET', path, **kwargs)

[docs] def simulate_head(self, path='/', **kwargs):
 """Simulates a HEAD request to a WSGI application.

 Equivalent to ``simulate_request('HEAD', ...)``

 Args:
 path (str): The URL path to request (default: '/')

 Keyword Args:
 query_string (str): A raw query string to include in the
 request (default: ``None``)
 headers (dict): Additional headers to include in the request
 (default: ``None``)
 """
 return self.simulate_request('HEAD', path, **kwargs)

[docs] def simulate_post(self, path='/', **kwargs):
 """Simulates a POST request to a WSGI application.

 Equivalent to ``simulate_request('POST', ...)``

 Args:
 path (str): The URL path to request (default: '/')

 Keyword Args:
 query_string (str): A raw query string to include in the
 request (default: ``None``)
 headers (dict): Additional headers to include in the request
 (default: ``None``)
 body (str): A string to send as the body of the request.
 Accepts both byte strings and Unicode strings
 (default: ``None``). If a Unicode string is provided,
 it will be encoded as UTF-8 in the request.
 """
 return self.simulate_request('POST', path, **kwargs)

[docs] def simulate_put(self, path='/', **kwargs):
 """Simulates a PUT request to a WSGI application.

 Equivalent to ``simulate_request('PUT', ...)``

 Args:
 path (str): The URL path to request (default: '/')

 Keyword Args:
 query_string (str): A raw query string to include in the
 request (default: ``None``)
 headers (dict): Additional headers to include in the request
 (default: ``None``)
 body (str): A string to send as the body of the request.
 Accepts both byte strings and Unicode strings
 (default: ``None``). If a Unicode string is provided,
 it will be encoded as UTF-8 in the request.
 """
 return self.simulate_request('PUT', path, **kwargs)

[docs] def simulate_options(self, path='/', **kwargs):
 """Simulates an OPTIONS request to a WSGI application.

 Equivalent to ``simulate_request('OPTIONS', ...)``

 Args:
 path (str): The URL path to request (default: '/')

 Keyword Args:
 query_string (str): A raw query string to include in the
 request (default: ``None``)
 headers (dict): Additional headers to include in the request
 (default: ``None``)
 """
 return self.simulate_request('OPTIONS', path, **kwargs)

[docs] def simulate_patch(self, path='/', **kwargs):
 """Simulates a PATCH request to a WSGI application.

 Equivalent to ``simulate_request('PATCH', ...)``

 Args:
 path (str): The URL path to request (default: '/')

 Keyword Args:
 query_string (str): A raw query string to include in the
 request (default: ``None``)
 headers (dict): Additional headers to include in the request
 (default: ``None``)
 body (str): A string to send as the body of the request.
 Accepts both byte strings and Unicode strings
 (default: ``None``). If a Unicode string is provided,
 it will be encoded as UTF-8 in the request.
 """
 return self.simulate_request('PATCH', path, **kwargs)

[docs] def simulate_delete(self, path='/', **kwargs):
 """Simulates a DELETE request to a WSGI application.

 Equivalent to ``simulate_request('DELETE', ...)``

 Args:
 path (str): The URL path to request (default: '/')

 Keyword Args:
 query_string (str): A raw query string to include in the
 request (default: ``None``)
 headers (dict): Additional headers to include in the request
 (default: ``None``)
 """
 return self.simulate_request('DELETE', path, **kwargs)

[docs] def simulate_request(self, method='GET', path='/', query_string=None,
 headers=None, body=None, file_wrapper=None):
 """Simulates a request to a WSGI application.

 Performs a WSGI request directly against ``self.api``.

 Keyword Args:
 method (str): The HTTP method to use in the request
 (default: 'GET')
 path (str): The URL path to request (default: '/')
 query_string (str): A raw query string to include in the
 request (default: ``None``)
 headers (dict): Additional headers to include in the request
 (default: ``None``)
 body (str): A string to send as the body of the request.
 Accepts both byte strings and Unicode strings
 (default: ``None``). If a Unicode string is provided,
 it will be encoded as UTF-8 in the request.
 file_wrapper (callable): Callable that returns an iterable,
 to be used as the value for *wsgi.file_wrapper* in the
 environ (default: ``None``).

 Returns:
 :py:class:`~.Result`: The result of the request
 """

 if not path.startswith('/'):
 raise ValueError("path must start with '/'")

 if query_string and query_string.startswith('?'):
 raise ValueError("query_string should not start with '?'")

 if '?' in path:
 # NOTE(kgriffs): We could allow this, but then we'd need
 # to define semantics regarding whether the path takes
 # precedence over the query_string. Also, it would make
 # tests less consistent, since there would be "more than
 # one...way to do it."
 raise ValueError(
 'path may not contain a query string. Please use the '
 'query_string parameter instead.'
)

 env = create_environ(
 method=method,
 path=path,
 query_string=(query_string or ''),
 headers=headers,
 body=body,
 file_wrapper=file_wrapper,
)

 srmock = StartResponseMock()
 validator = wsgiref.validate.validator(self.api)
 iterable = validator(env, srmock)

 result = Result(iterable, srmock.status, srmock.headers)

 return result

 Created using Sphinx 1.3.5.

_modules/falcon/hooks.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.hooks

Copyright 2013 by Rackspace Hosting, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import functools
from functools import wraps
import inspect

import six

from falcon import HTTP_METHODS

[docs]def before(action):
 """Decorator to execute the given action function *before* the responder.

 Args:
 action (callable): A function of the form
 ``func(req, resp, resource, params)``, where `resource` is a
 reference to the resource class instance associated with the
 request, and `params` is a dict of URI Template field names,
 if any, that will be passed into the resource responder as
 kwargs.

 Note:
 Hooks may inject extra params as needed. For example::

 def do_something(req, resp, resource, params):
 try:
 params['id'] = int(params['id'])
 except ValueError:
 raise falcon.HTTPBadRequest('Invalid ID',
 'ID was not valid.')

 params['answer'] = 42

 """

 def _before(responder_or_resource):
 if isinstance(responder_or_resource, six.class_types):
 resource = responder_or_resource

 for method in HTTP_METHODS:
 responder_name = 'on_' + method.lower()

 try:
 responder = getattr(resource, responder_name)
 except AttributeError:
 # resource does not implement this method
 pass
 else:
 # Usually expect a method, but any callable will do
 if callable(responder):
 # This pattern is necessary to capture the current
 # value of responder in the do_before_all closure;
 # otherwise, they will capture the same responder
 # variable that is shared between iterations of the
 # for loop, above.
 def let(responder=responder):
 do_before_all = _wrap_with_before(action, responder)

 setattr(resource, responder_name, do_before_all)

 let()

 return resource

 else:
 responder = responder_or_resource
 do_before_one = _wrap_with_before(action, responder)

 return do_before_one

 return _before

[docs]def after(action):
 """Decorator to execute the given action function *after* the responder.

 Args:
 action (callable): A function of the form
 ``func(req, resp, resource)``, where `resource` is a
 reference to the resource class instance associated with the
 request

 """

 def _after(responder_or_resource):
 if isinstance(responder_or_resource, six.class_types):
 resource = responder_or_resource

 for method in HTTP_METHODS:
 responder_name = 'on_' + method.lower()

 try:
 responder = getattr(resource, responder_name)
 except AttributeError:
 # resource does not implement this method
 pass
 else:
 # Usually expect a method, but any callable will do
 if callable(responder):

 def let(responder=responder):
 do_after_all = _wrap_with_after(action, responder)

 setattr(resource, responder_name, do_after_all)

 let()

 return resource

 else:
 responder = responder_or_resource
 do_after_one = _wrap_with_after(action, responder)

 return do_after_one

 return _after

Helpers

def _has_resource_arg(action):
 """Check if the given action function accepts a resource arg."""

 if isinstance(action, functools.partial):
 # NOTE(kgriffs): We special-case this, since versions of
 # Python prior to 3.4 raise an error when trying to get the
 # spec for a partial.
 spec = inspect.getargspec(action.func)

 elif inspect.isroutine(action):
 # NOTE(kgriffs): We have to distinguish between instances of a
 # callable class vs. a routine, since Python versions prior to
 # 3.4 raise an error when trying to get the spec from
 # a callable class instance.
 spec = inspect.getargspec(action)

 else:
 spec = inspect.getargspec(action.__call__)

 return 'resource' in spec.args

def _wrap_with_after(action, responder):
 """Execute the given action function after a responder method.

 Args:
 action: A function with a signature similar to a resource responder
 method, taking the form ``func(req, resp, resource)``.
 responder: The responder method to wrap.
 """

 # NOTE(swistakm): create shim before checking what will be actually
 # decorated. This helps to avoid excessive nesting
 if _has_resource_arg(action):
 shim = action
 else:
 # TODO(kgriffs): This decorator does not work on callable
 # classes in Python vesions prior to 3.4.
 #
 # @wraps(action)
 def shim(req, resp, resource):
 action(req, resp)

 @wraps(responder)
 def do_after(self, req, resp, **kwargs):
 responder(self, req, resp, **kwargs)
 shim(req, resp, self)

 return do_after

def _wrap_with_before(action, responder):
 """Execute the given action function before a responder method.

 Args:
 action: A function with a similar signature to a resource responder
 method, taking the form ``func(req, resp, resource, params)``.
 responder: The responder method to wrap
 """

 # NOTE(swistakm): create shim before checking what will be actually
 # decorated. This allows to avoid excessive nesting
 if _has_resource_arg(action):
 shim = action
 else:
 # TODO(kgriffs): This decorator does not work on callable
 # classes in Python vesions prior to 3.4.
 #
 # @wraps(action)
 def shim(req, resp, resource, kwargs):
 # NOTE(kgriffs): Don't have to pass "self" even if has_self,
 # since method is assumed to be bound.
 action(req, resp, kwargs)

 @wraps(responder)
 def do_before(self, req, resp, **kwargs):
 shim(req, resp, self, kwargs)
 responder(self, req, resp, **kwargs)

 return do_before

 Created using Sphinx 1.3.5.

_static/minus.png

_modules/falcon/routing/util.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.routing.util

Copyright 2013 by Rackspace Hosting, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import re

import six

from falcon import HTTP_METHODS, responders

NOTE(kgriffs): Published method; take care to avoid breaking changes.
[docs]def compile_uri_template(template):
 """Compile the given URI template string into a pattern matcher.

 This function can be used to construct custom routing engines that
 iterate through a list of possible routes, attempting to match
 an incoming request against each route's compiled regular expression.

 Each field is converted to a named group, so that when a match
 is found, the fields can be easily extracted using
 :py:meth:`re.MatchObject.groupdict`.

 This function does not support the more flexible templating
 syntax used in the default router. Only simple paths with bracketed
 field expressions are recognized. For example::

 /
 /books
 /books/{isbn}
 /books/{isbn}/characters
 /books/{isbn}/characters/{name}

 Also, note that if the template contains a trailing slash character,
 it will be stripped in order to normalize the routing logic.

 Args:
 template(str): The template to compile. Note that field names are
 restricted to ASCII a-z, A-Z, and the underscore character.

 Returns:
 tuple: (template_field_names, template_regex)
 """

 if not isinstance(template, six.string_types):
 raise TypeError('uri_template is not a string')

 if not template.startswith('/'):
 raise ValueError("uri_template must start with '/'")

 if '//' in template:
 raise ValueError("uri_template may not contain '//'")

 if template != '/' and template.endswith('/'):
 template = template[:-1]

 # template names should be able to start with A-Za-z
 # but also contain 0-9_ in the remaining portion
 expression_pattern = r'{([a-zA-Z]\w*)}'

 # Get a list of field names
 fields = set(re.findall(expression_pattern, template))

 # Convert Level 1 var patterns to equivalent named regex groups
 escaped = re.sub(r'[\.\(\)\[\]\?*\+\^\|]', r'\\\g<0>', template)
 pattern = re.sub(expression_pattern, r'(?P<\1>[^/]+)', escaped)
 pattern = r'\A' + pattern + r'\Z'

 return fields, re.compile(pattern, re.IGNORECASE)

[docs]def create_http_method_map(resource):
 """Maps HTTP methods (e.g., 'GET', 'POST') to methods of a resource object.

 Args:
 resource: An object with *responder* methods, following the naming
 convention *on_**, that correspond to each method the resource
 supports. For example, if a resource supports GET and POST, it
 should define ``on_get(self, req, resp)`` and
 ``on_post(self, req, resp)``.

 Returns:
 dict: A mapping of HTTP methods to responders.

 """

 method_map = {}

 for method in HTTP_METHODS:
 try:
 responder = getattr(resource, 'on_' + method.lower())
 except AttributeError:
 # resource does not implement this method
 pass
 else:
 # Usually expect a method, but any callable will do
 if callable(responder):
 method_map[method] = responder

 # Attach a resource for unsupported HTTP methods
 allowed_methods = sorted(list(method_map.keys()))

 if 'OPTIONS' not in method_map:
 # OPTIONS itself is intentionally excluded from the Allow header
 opt_responder = responders.create_default_options(allowed_methods)
 method_map['OPTIONS'] = opt_responder
 allowed_methods.append('OPTIONS')

 na_responder = responders.create_method_not_allowed(allowed_methods)

 for method in HTTP_METHODS:
 if method not in allowed_methods:
 method_map[method] = na_responder

 return method_map

 Created using Sphinx 1.3.5.

_static/comment.png

_modules/falcon/testing/base.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.testing.base

Copyright 2013 by Rackspace Hosting, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import itertools

try:
 import testtools as unittest
except ImportError: # pragma: nocover
 import unittest

import falcon
import falcon.request
from falcon.testing.srmock import StartResponseMock
from falcon.testing.helpers import create_environ

[docs]class TestBase(unittest.TestCase):
 """Extends :py:mod:`unittest` to support WSGI functional testing.

 Warning:
 This class has been deprecated and will be removed in a future
 release. Please use :py:class:`~.TestCase`
 instead.

 Note:
 If available, uses :py:mod:`testtools` in lieu of
 :py:mod:`unittest`.

 This base class provides some extra plumbing for unittest-style
 test cases, to help simulate WSGI calls without having to spin up
 an actual web server. Simply inherit from this class in your test
 case classes instead of :py:class:`unittest.TestCase` or
 :py:class:`testtools.TestCase`.

 Attributes:
 api (falcon.API): An API instance to target when simulating
 requests. Defaults to ``falcon.API()``.
 srmock (falcon.testing.StartResponseMock): Provides a callable
 that simulates the behavior of the `start_response` argument
 that the server would normally pass into the WSGI app. The
 mock object captures various information from the app's
 response to the simulated request.
 test_route (str): A simple, generated path that a test
 can use to add a route to the API.
 """

 api_class = falcon.API
 srmock_class = StartResponseMock

[docs] def setUp(self):
 """Initializer, unittest-style"""
 super(TestBase, self).setUp()
 self._id = itertools.count(0)
 self.api = self.api_class()
 self.srmock = self.srmock_class()
 self.test_route = '/{0}'.format(next(self._id))

 # Reset to simulate "restarting" the WSGI container
 falcon.request._maybe_wrap_wsgi_stream = True

 before = getattr(self, 'before', None)
 if callable(before):
 before()

[docs] def tearDown(self):
 """Destructor, unittest-style"""

 after = getattr(self, 'after', None)
 if callable(after):
 after()

 super(TestBase, self).tearDown()

 # NOTE(warsaw): Pythons earlier than 2.7 do not have a self.assertIn()
 # method, so use this compatibility function instead.
 if not hasattr(unittest.TestCase, 'assertIn'): # pragma: nocover
 def assertIn(self, a, b):
 self.assertTrue(a in b)

[docs] def simulate_request(self, path, decode=None, **kwargs):
 """Simulates a request to `self.api`.

 Args:
 path (str): The path to request.
 decode (str, optional): If this is set to a character encoding,
 such as 'utf-8', `simulate_request` will assume the
 response is a single byte string, and will decode it as the
 result of the request, rather than simply returning the
 standard WSGI iterable.
 kwargs (optional): Same as those defined for
 `falcon.testing.create_environ`.

 """

 if not path:
 path = '/'

 result = self.api(create_environ(path=path, **kwargs),
 self.srmock)

 if decode is not None:
 if not result:
 return ''

 return result[0].decode(decode)

 return result

 Created using Sphinx 1.3.5.

_modules/falcon/testing/helpers.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.testing.helpers

Copyright 2013 by Rackspace Hosting, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import cgi
import random
import io
import sys

import six

from falcon.util import uri, http_now

Constants
DEFAULT_HOST = 'falconframework.org'

NOTE(kgriffs): Alias for backwards-compatibility with Falcon 0.2
httpnow = http_now

get_encoding_from_headers() is Copyright 2016 Kenneth Reitz, and is
used here under the terms of the Apache License, Version 2.0.
def get_encoding_from_headers(headers):
 """Returns encoding from given HTTP Header Dict.

 Args:
 headers(dict): Dictionary from which to extract encoding. Header
 names must either be lowercase or the dict must support
 case-insensitive lookups.
 """

 content_type = headers.get('content-type')

 if not content_type:
 return None

 content_type, params = cgi.parse_header(content_type)

 if 'charset' in params:
 return params['charset'].strip("'\"")

 if 'text' in content_type:
 return 'ISO-8859-1'

 return None

[docs]def rand_string(min, max):
 """Returns a randomly-generated string, of a random length.

 Args:
 min (int): Minimum string length to return, inclusive
 max (int): Maximum string length to return, inclusive

 """

 int_gen = random.randint
 string_length = int_gen(min, max)
 return ''.join([chr(int_gen(ord(' '), ord('~')))
 for __ in range(string_length)])

[docs]def create_environ(path='/', query_string='', protocol='HTTP/1.1',
 scheme='http', host=DEFAULT_HOST, port=None,
 headers=None, app='', body='', method='GET',
 wsgierrors=None, file_wrapper=None):

 """Creates a mock PEP-3333 environ ``dict`` for simulating WSGI requests.

 Keyword Args:
 path (str): The path for the request (default '/')
 query_string (str): The query string to simulate, without a
 leading '?' (default '')
 protocol (str): The HTTP protocol to simulate
 (default 'HTTP/1.1'). If set to 'HTTP/1.0', the Host header
 will not be added to the environment.
 scheme (str): URL scheme, either 'http' or 'https' (default 'http')
 host(str): Hostname for the request (default 'falconframework.org')
 port (str): The TCP port to simulate. Defaults to
 the standard port used by the given scheme (i.e., 80 for 'http'
 and 443 for 'https').
 headers (dict): Headers as a ``dict`` or an iterable yielding
 (*key*, *value*) ``tuple``'s
 app (str): Value for the ``SCRIPT_NAME`` environ variable, described in
 PEP-333: 'The initial portion of the request URL's "path" that
 corresponds to the application object, so that the application
 knows its virtual "location". This may be an empty string, if the
 application corresponds to the "root" of the server.' (default '')
 body (str): The body of the request (default ''). Accepts both byte
 strings and Unicode strings. Unicode strings are encoded as UTF-8
 in the request.
 method (str): The HTTP method to use (default 'GET')
 wsgierrors (io): The stream to use as *wsgierrors*
 (default ``sys.stderr``)
 file_wrapper: Callable that returns an iterable, to be used as
 the value for *wsgi.file_wrapper* in the environ.

 """

 body = io.BytesIO(body.encode('utf-8')
 if isinstance(body, six.text_type) else body)

 # NOTE(kgriffs): wsgiref, gunicorn, and uWSGI all unescape
 # the paths before setting PATH_INFO
 path = uri.decode(path)

 if six.PY2 and isinstance(path, six.text_type):
 path = path.encode('utf-8')

 scheme = scheme.lower()
 if port is None:
 port = '80' if scheme == 'http' else '443'
 else:
 port = str(port)

 env = {
 'SERVER_PROTOCOL': protocol,
 'SERVER_SOFTWARE': 'gunicorn/0.17.0',
 'SCRIPT_NAME': app,
 'REQUEST_METHOD': method,
 'PATH_INFO': path,
 'QUERY_STRING': query_string,
 'HTTP_USER_AGENT': 'curl/7.24.0 (x86_64-apple-darwin12.0)',
 'REMOTE_PORT': '65133',
 'RAW_URI': '/',
 'REMOTE_ADDR': '127.0.0.1',
 'SERVER_NAME': host,
 'SERVER_PORT': port,

 'wsgi.version': (1, 0),
 'wsgi.url_scheme': scheme,
 'wsgi.input': body,
 'wsgi.errors': wsgierrors or sys.stderr,
 'wsgi.multithread': False,
 'wsgi.multiprocess': True,
 'wsgi.run_once': False
 }

 if file_wrapper is not None:
 env['wsgi.file_wrapper'] = file_wrapper

 if protocol != 'HTTP/1.0':
 host_header = host

 if scheme == 'https':
 if port != '443':
 host_header += ':' + port
 else:
 if port != '80':
 host_header += ':' + port

 env['HTTP_HOST'] = host_header

 content_length = body.seek(0, 2)
 body.seek(0)

 if content_length != 0:
 env['CONTENT_LENGTH'] = str(content_length)

 if headers is not None:
 _add_headers_to_environ(env, headers)

 return env

def _add_headers_to_environ(env, headers):
 if not isinstance(headers, dict):
 # Try to convert
 headers = dict(headers)

 for name, value in headers.items():
 name = name.upper().replace('-', '_')

 if value is None:
 value = ''
 else:
 value = value.strip()

 if name == 'CONTENT_TYPE':
 env[name] = value
 elif name == 'CONTENT_LENGTH':
 env[name] = value
 else:
 env['HTTP_' + name] = value

 Created using Sphinx 1.3.5.

_modules/falcon/request.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.request

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

from datetime import datetime

try:
 # NOTE(kgrifs): In Python 2.6 and 2.7, socket._fileobject is a
 # standard way of exposing a socket as a file-like object, and
 # is used by wsgiref for wsgi.input.
 import socket
 NativeStream = socket._fileobject
except AttributeError:
 # NOTE(kgriffs): In Python 3.3, wsgiref implements wsgi.input
 # using _io.BufferedReader which is an alias of io.BufferedReader
 import io
 NativeStream = io.BufferedReader

import mimeparse
import six
from wsgiref.validate import InputWrapper

from falcon.errors import * # NOQA
from falcon import util
from falcon.util.uri import parse_query_string, parse_host, unquote_string
from falcon import request_helpers as helpers

NOTE(tbug): In some cases, http_cookies is not a module
but a dict-like structure. This fixes that issue.
See issue https://github.com/falconry/falcon/issues/556
from six.moves import http_cookies
SimpleCookie = http_cookies.SimpleCookie

DEFAULT_ERROR_LOG_FORMAT = (u'{0:%Y-%m-%d %H:%M:%S} [FALCON] [ERROR]'
 u' {1} {2}{3} => ')

TRUE_STRINGS = ('true', 'True', 'yes', '1')
FALSE_STRINGS = ('false', 'False', 'no', '0')
WSGI_CONTENT_HEADERS = ('CONTENT_TYPE', 'CONTENT_LENGTH')

_maybe_wrap_wsgi_stream = True

PERF(kgriffs): Avoid an extra namespace lookup when using these functions
strptime = datetime.strptime
now = datetime.now

[docs]class Request(object):
 """Represents a client's HTTP request.

 Note:
 `Request` is not meant to be instantiated directly by responders.

 Args:
 env (dict): A WSGI environment dict passed in from the server. See
 also PEP-3333.
 options (dict): Set of global options passed from the API handler.

 Attributes:
 protocol (str): Either 'http' or 'https'.
 method (str): HTTP method requested (e.g., 'GET', 'POST', etc.)
 host (str): Hostname requested by the client
 subdomain (str): Leftmost (i.e., most specific) subdomain from the
 hostname. If only a single domain name is given, `subdomain`
 will be ``None``.

 Note:
 If the hostname in the request is an IP address, the value
 for `subdomain` is undefined.

 env (dict): Reference to the WSGI environ ``dict`` passed in from the
 server. See also PEP-3333.
 app (str): Name of the WSGI app (if using WSGI's notion of virtual
 hosting).
 access_route(list): IP address of the original client, as well
 as any known addresses of proxies fronting the WSGI server.

 The following request headers are checked, in order of
 preference, to determine the addresses:

 - ``Forwarded``
 - ``X-Forwarded-For``
 - ``X-Real-IP``

 If none of these headers are available, the value of
 :py:attr:`~.remote_addr` is used instead.

 Note:
 Per `RFC 7239`_, the access route may contain "unknown"
 and obfuscated identifiers, in addition to IPv4 and
 IPv6 addresses

 .. _RFC 7239: https://tools.ietf.org/html/rfc7239

 Warning:
 Headers can be forged by any client or proxy. Use this
 property with caution and validate all values before
 using them. Do not rely on the access route to authorize
 requests.

 remote_addr(str): IP address of the closest client or proxy to
 the WSGI server.

 This property is determined by the value of ``REMOTE_ADDR``
 in the WSGI environment dict. Since this address is not
 derived from an HTTP header, clients and proxies can not
 forge it.

 Note:
 If your application is behind one or more reverse
 proxies, you can use :py:attr:`~.access_route`
 to retrieve the real IP address of the client.

 context (dict): Dictionary to hold any data about the request which is
 specific to your app (e.g. session object). Falcon itself will
 not interact with this attribute after it has been initialized.
 context_type (class): Class variable that determines the
 factory or type to use for initializing the
 `context` attribute. By default, the framework will
 instantiate standard
 ``dict`` objects. However, You may override this behavior
 by creating a custom child class of ``falcon.Request``, and
 then passing that new class to `falcon.API()` by way of the
 latter's `request_type` parameter.

 Note:
 When overriding `context_type` with a factory function (as
 opposed to a class), the function is called like a method of
 the current Request instance. Therefore the first argument is
 the Request instance itself (self).

 uri (str): The fully-qualified URI for the request.
 url (str): alias for `uri`.
 relative_uri (str): The path + query string portion of the full URI.
 path (str): Path portion of the request URL (not including query
 string).
 query_string (str): Query string portion of the request URL, without
 the preceding '?' character.
 user_agent (str): Value of the User-Agent header, or ``None`` if the
 header is missing.
 accept (str): Value of the Accept header, or '*/*' if the header is
 missing.
 auth (str): Value of the Authorization header, or ``None`` if the
 header is missing.
 client_accepts_json (bool): ``True`` if the Accept header indicates
 that the client is willing to receive JSON, otherwise ``False``.
 client_accepts_msgpack (bool): ``True`` if the Accept header indicates
 that the client is willing to receive MessagePack, otherwise
 ``False``.
 client_accepts_xml (bool): ``True`` if the Accept header indicates that
 the client is willing to receive XML, otherwise ``False``.
 content_type (str): Value of the Content-Type header, or ``None`` if
 the header is missing.
 content_length (int): Value of the Content-Length header converted
 to an ``int``, or ``None`` if the header is missing.
 stream: File-like object for reading the body of the request, if any.

 Note:
 If an HTML form is POSTed to the API using the
 application/x-www-form-urlencoded media type, and
 the :py:attr:`~.RequestOptions.auto_parse_form_urlencoded`
 option is set, the framework
 will consume `stream` in order to parse the parameters
 and merge them into the query string parameters. In this
 case, the stream will be left at EOF.

 date (datetime): Value of the Date header, converted to a
 ``datetime`` instance. The header value is assumed to
 conform to RFC 1123.
 expect (str): Value of the Expect header, or ``None`` if the
 header is missing.
 range (tuple of int): A 2-member ``tuple`` parsed from the value of the
 Range header.

 The two members correspond to the first and last byte
 positions of the requested resource, inclusive. Negative
 indices indicate offset from the end of the resource,
 where -1 is the last byte, -2 is the second-to-last byte,
 and so forth.

 Only continous ranges are supported (e.g., "bytes=0-0,-1" would
 result in an HTTPBadRequest exception when the attribute is
 accessed.)
 range_unit (str): Unit of the range parsed from the value of the
 Range header, or ``None`` if the header is missing
 if_match (str): Value of the If-Match header, or ``None`` if the
 header is missing.
 if_none_match (str): Value of the If-None-Match header, or ``None``
 if the header is missing.
 if_modified_since (datetime): Value of the If-Modified-Since header,
 or ``None`` if the header is missing.
 if_unmodified_since (datetime): Value of the If-Unmodified-Since
 header, or ``None`` if the header is missing.
 if_range (str): Value of the If-Range header, or ``None`` if the
 header is missing.

 headers (dict): Raw HTTP headers from the request with
 canonical dash-separated names. Parsing all the headers
 to create this dict is done the first time this attribute
 is accessed. This parsing can be costly, so unless you
 need all the headers in this format, you should use the
 `get_header` method or one of the convenience attributes
 instead, to get a value for a specific header.

 params (dict): The mapping of request query parameter names to their
 values. Where the parameter appears multiple times in the query
 string, the value mapped to that parameter key will be a list of
 all the values in the order seen.

 options (dict): Set of global options passed from the API handler.

 cookies (dict):
 A dict of name/value cookie pairs.
 See also: :ref:`Getting Cookies <getting-cookies>`

 """

 __slots__ = (
 '_cached_headers',
 '_cached_uri',
 '_cached_relative_uri',
 'content_type',
 'env',
 'method',
 '_params',
 'path',
 'query_string',
 'stream',
 'context',
 '_wsgierrors',
 'options',
 '_cookies',
 '_cached_access_route',
)

 # Allow child classes to override this
 context_type = None

 def __init__(self, env, options=None):
 global _maybe_wrap_wsgi_stream

 self.env = env
 self.options = options if options else RequestOptions()

 self._wsgierrors = env['wsgi.errors']
 self.stream = env['wsgi.input']
 self.method = env['REQUEST_METHOD']

 # Normalize path
 path = env['PATH_INFO']
 if path:
 if six.PY3:
 # PEP 3333 specifies that PATH_INFO variable are always
 # "bytes tunneled as latin-1" and must be encoded back
 path = path.encode('latin1').decode('utf-8', 'replace')

 if len(path) != 1 and path.endswith('/'):
 self.path = path[:-1]
 else:
 self.path = path
 else:
 self.path = '/'

 # PERF(kgriffs): if...in is faster than using env.get(...)
 if 'QUERY_STRING' in env:
 self.query_string = env['QUERY_STRING']

 if self.query_string:
 self._params = parse_query_string(
 self.query_string,
 keep_blank_qs_values=self.options.keep_blank_qs_values,
)

 else:
 self._params = {}

 else:
 self.query_string = ''
 self._params = {}

 self._cookies = None

 self._cached_headers = None
 self._cached_uri = None
 self._cached_relative_uri = None
 self._cached_access_route = None

 try:
 self.content_type = self.env['CONTENT_TYPE']
 except KeyError:
 self.content_type = None

 # NOTE(kgriffs): Wrap wsgi.input if needed to make read() more robust,
 # normalizing semantics between, e.g., gunicorn and wsgiref.
 if _maybe_wrap_wsgi_stream:
 if isinstance(self.stream, (NativeStream, InputWrapper,)):
 self._wrap_stream()
 else:
 # PERF(kgriffs): If self.stream does not need to be wrapped
 # this time, it never needs to be wrapped since the server
 # will continue using the same type for wsgi.input.
 _maybe_wrap_wsgi_stream = False

 # PERF(kgriffs): Technically, we should spend a few more
 # cycles and parse the content type for real, but
 # this heuristic will work virtually all the time.
 if (self.options.auto_parse_form_urlencoded and
 self.content_type is not None and
 'application/x-www-form-urlencoded' in self.content_type):
 self._parse_form_urlencoded()

 if self.context_type is None:
 # Literal syntax is more efficient than using dict()
 self.context = {}
 else:
 self.context = self.context_type()

 # --
 # Properties
 # --

 user_agent = helpers.header_property('HTTP_USER_AGENT')
 auth = helpers.header_property('HTTP_AUTHORIZATION')

 expect = helpers.header_property('HTTP_EXPECT')

 if_match = helpers.header_property('HTTP_IF_MATCH')
 if_none_match = helpers.header_property('HTTP_IF_NONE_MATCH')
 if_range = helpers.header_property('HTTP_IF_RANGE')

 @property
 def client_accepts_json(self):
 return self.client_accepts('application/json')

 @property
 def client_accepts_msgpack(self):
 return (self.client_accepts('application/x-msgpack') or
 self.client_accepts('application/msgpack'))

 @property
 def client_accepts_xml(self):
 return self.client_accepts('application/xml')

 @property
 def accept(self):
 # NOTE(kgriffs): Per RFC, a missing accept header is
 # equivalent to '*/*'
 try:
 return self.env['HTTP_ACCEPT'] or '*/*'
 except KeyError:
 return '*/*'

 @property
 def content_length(self):
 try:
 value = self.env['CONTENT_LENGTH']
 except KeyError:
 return None

 # NOTE(kgriffs): Normalize an empty value to behave as if
 # the header were not included; wsgiref, at least, inserts
 # an empty CONTENT_LENGTH value if the request does not
 # set the header. Gunicorn and uWSGI do not do this, but
 # others might if they are trying to match wsgiref's
 # behavior too closely.
 if not value:
 return None

 try:
 value_as_int = int(value)
 except ValueError:
 msg = 'The value of the header must be a number.'
 raise HTTPInvalidHeader(msg, 'Content-Length')

 if value_as_int < 0:
 msg = 'The value of the header must be a positive number.'
 raise HTTPInvalidHeader(msg, 'Content-Length')

 return value_as_int

 @property
 def date(self):
 return self.get_header_as_datetime('Date')

 @property
 def if_modified_since(self):
 return self.get_header_as_datetime('If-Modified-Since')

 @property
 def if_unmodified_since(self):
 return self.get_header_as_datetime('If-Unmodified-Since')

 @property
 def range(self):
 try:
 value = self.env['HTTP_RANGE']
 if '=' in value:
 unit, sep, req_range = value.partition('=')
 else:
 msg = "The value must be prefixed with a range unit, e.g. 'bytes='"
 raise HTTPInvalidHeader(msg, 'Range')
 except KeyError:
 return None

 if ',' in req_range:
 msg = 'The value must be a continuous range.'
 raise HTTPInvalidHeader(msg, 'Range')

 try:
 first, sep, last = req_range.partition('-')

 if not sep:
 raise ValueError()

 if first:
 return (int(first), int(last or -1))
 elif last:
 return (-int(last), -1)
 else:
 msg = 'The range offsets are missing.'
 raise HTTPInvalidHeader(msg, 'Range')

 except ValueError:
 href = 'http://goo.gl/zZ6Ey'
 href_text = 'HTTP/1.1 Range Requests'
 msg = ('It must be a range formatted according to RFC 7233.')
 raise HTTPInvalidHeader(msg, 'Range', href=href,
 href_text=href_text)

 @property
 def range_unit(self):
 try:
 value = self.env['HTTP_RANGE']

 if '=' in value:
 unit, sep, req_range = value.partition('=')
 return unit
 else:
 msg = "The value must be prefixed with a range unit, e.g. 'bytes='"
 raise HTTPInvalidHeader(msg, 'Range')
 except KeyError:
 return None

 @property
 def app(self):
 return self.env.get('SCRIPT_NAME', '')

 @property
 def protocol(self):
 return self.env['wsgi.url_scheme']

 @property
 def uri(self):
 if self._cached_uri is None:
 env = self.env
 protocol = env['wsgi.url_scheme']

 # NOTE(kgriffs): According to PEP-3333 we should first
 # try to use the Host header if present.
 #
 # PERF(kgriffs): try..except is faster than .get
 try:
 host = env['HTTP_HOST']
 except KeyError:
 host = env['SERVER_NAME']
 port = env['SERVER_PORT']

 if protocol == 'https':
 if port != '443':
 host += ':' + port
 else:
 if port != '80':
 host += ':' + port

 # PERF: For small numbers of items, '+' is faster
 # than ''.join(...). Concatenation is also generally
 # faster than formatting.
 value = (protocol + '://' +
 host +
 self.app +
 self.path)

 if self.query_string:
 value = value + '?' + self.query_string

 self._cached_uri = value

 return self._cached_uri

 url = uri

 @property
 def host(self):
 try:
 # NOTE(kgriffs): Prefer the host header; the web server
 # isn't supposed to mess with it, so it should be what
 # the client actually sent.
 host_header = self.env['HTTP_HOST']
 host, port = parse_host(host_header)
 except KeyError:
 # PERF(kgriffs): According to PEP-3333, this header
 # will always be present.
 host = self.env['SERVER_NAME']

 return host

 @property
 def subdomain(self):
 # PERF(kgriffs): .partition is slightly faster than .split
 subdomain, sep, remainder = self.host.partition('.')
 return subdomain if sep else None

 @property
 def relative_uri(self):
 if self._cached_relative_uri is None:
 if self.query_string:
 self._cached_relative_uri = (self.app + self.path + '?' +
 self.query_string)
 else:
 self._cached_relative_uri = self.app + self.path

 return self._cached_relative_uri

 @property
 def headers(self):
 # NOTE(kgriffs: First time here will cache the dict so all we
 # have to do is clone it in the future.
 if self._cached_headers is None:
 headers = self._cached_headers = {}

 env = self.env
 for name, value in env.items():
 if name.startswith('HTTP_'):
 # NOTE(kgriffs): Don't take the time to fix the case
 # since headers are supposed to be case-insensitive
 # anyway.
 headers[name[5:].replace('_', '-')] = value

 elif name in WSGI_CONTENT_HEADERS:
 headers[name.replace('_', '-')] = value

 return self._cached_headers.copy()

 @property
 def params(self):
 return self._params

 @property
 def cookies(self):
 if self._cookies is None:
 # NOTE(tbug): We might want to look into parsing
 # cookies ourselves. The SimpleCookie is doing a
 # lot if stuff only required to SEND cookies.
 parser = SimpleCookie(self.get_header('Cookie'))
 cookies = {}
 for morsel in parser.values():
 cookies[morsel.key] = morsel.value

 self._cookies = cookies

 return self._cookies.copy()

 @property
 def access_route(self):
 if self._cached_access_route is None:
 # NOTE(kgriffs): Try different headers in order of
 # preference; if none are found, fall back to REMOTE_ADDR.
 #
 # If one of these headers is present, but its value is
 # malformed such that we end up with an empty list, or
 # a non-empty list containing malformed values, go ahead
 # and return the results as-is. The alternative would be
 # to fall back to another header or to REMOTE_ADDR, but
 # that only masks the problem; the operator needs to be
 # aware that an upstream proxy is malfunctioning.

 if 'HTTP_FORWARDED' in self.env:
 self._cached_access_route = self._parse_rfc_forwarded()
 elif 'HTTP_X_FORWARDED_FOR' in self.env:
 addresses = self.env['HTTP_X_FORWARDED_FOR'].split(',')
 self._cached_access_route = [ip.strip() for ip in addresses]
 elif 'HTTP_X_REAL_IP' in self.env:
 self._cached_access_route = [self.env['HTTP_X_REAL_IP']]
 elif 'REMOTE_ADDR' in self.env:
 self._cached_access_route = [self.env['REMOTE_ADDR']]
 else:
 self._cached_access_route = []

 return self._cached_access_route

 @property
 def remote_addr(self):
 return self.env.get('REMOTE_ADDR')

 # --
 # Methods
 # --

[docs] def client_accepts(self, media_type):
 """Determines whether or not the client accepts a given media type.

 Args:
 media_type (str): An Internet media type to check.

 Returns:
 bool: ``True`` if the client has indicated in the Accept header
 that it accepts the specified media type. Otherwise, returns
 ``False``.
 """

 accept = self.accept

 # PERF(kgriffs): Usually the following will be true, so
 # try it first.
 if (accept == media_type) or (accept == '*/*'):
 return True

 # Fall back to full-blown parsing
 try:
 return mimeparse.quality(media_type, accept) != 0.0
 except ValueError:
 return False

[docs] def client_prefers(self, media_types):
 """Returns the client's preferred media type, given several choices.

 Args:
 media_types (iterable of str): One or more Internet media types
 from which to choose the client's preferred type. This value
 must be an iterable collection of strings.

 Returns:
 str: The client's preferred media type, based on the Accept
 header. Returns ``None`` if the client does not accept any
 of the given types.
 """

 try:
 # NOTE(kgriffs): best_match will return '' if no match is found
 preferred_type = mimeparse.best_match(media_types, self.accept)
 except ValueError:
 # Value for the accept header was not formatted correctly
 preferred_type = ''

 return (preferred_type if preferred_type else None)

[docs] def get_header(self, name, required=False):
 """Retrieve the raw string value for the given header.

 Args:
 name (str): Header name, case-insensitive (e.g., 'Content-Type')
 required (bool, optional): Set to ``True`` to raise
 ``HTTPBadRequest`` instead of returning gracefully when the
 header is not found (default ``False``).

 Returns:
 str: The value of the specified header if it exists, or ``None`` if
 the header is not found and is not required.

 Raises:
 HTTPBadRequest: The header was not found in the request, but
 it was required.

 """

 wsgi_name = name.upper().replace('-', '_')

 # Use try..except to optimize for the header existing in most cases
 try:
 # Don't take the time to cache beforehand, using HTTP naming.
 # This will be faster, assuming that most headers are looked
 # up only once, and not all headers will be requested.
 return self.env['HTTP_' + wsgi_name]

 except KeyError:
 # NOTE(kgriffs): There are a couple headers that do not
 # use the HTTP prefix in the env, so try those. We expect
 # people to usually just use the relevant helper properties
 # to access these instead of .get_header.
 if wsgi_name in WSGI_CONTENT_HEADERS:
 try:
 return self.env[wsgi_name]
 except KeyError:
 pass

 if not required:
 return None

 raise HTTPMissingHeader(name)

[docs] def get_header_as_datetime(self, header, required=False, obs_date=False):
 """Return an HTTP header with HTTP-Date values as a datetime.

 Args:
 name (str): Header name, case-insensitive (e.g., 'Date')
 required (bool, optional): Set to ``True`` to raise
 ``HTTPBadRequest`` instead of returning gracefully when the
 header is not found (default ``False``).
 obs_date (bool, optional): Support obs-date formats according to
 RFC 7231, e.g.: "Sunday, 06-Nov-94 08:49:37 GMT"
 (default ``False``).

 Returns:
 datetime: The value of the specified header if it exists,
 or ``None`` if the header is not found and is not required.

 Raises:
 HTTPBadRequest: The header was not found in the request, but
 it was required.
 HttpInvalidHeader: The header contained a malformed/invalid value.
 """

 try:
 http_date = self.get_header(header, required=required)
 return util.http_date_to_dt(http_date, obs_date=obs_date)
 except TypeError:
 # When the header does not exist and isn't required
 return None
 except ValueError:
 msg = ('It must be formatted according to RFC 7231, '
 'Section 7.1.1.1')
 raise HTTPInvalidHeader(msg, header)

[docs] def get_param(self, name, required=False, store=None, default=None):
 """Return the raw value of a query string parameter as a string.

 Note:
 If an HTML form is POSTed to the API using the
 application/x-www-form-urlencoded media type, the
 parameters from the request body will be merged into
 the query string parameters.

 If a key appears more than once in the form data, one of the
 values will be returned as a string, but it is undefined which
 one. Use `req.get_param_as_list()` to retrieve all the values.

 Note:
 Similar to the way multiple keys in form data is handled,
 if a query parameter is assigned a comma-separated list of
 values (e.g., 'foo=a,b,c'), only one of those values will be
 returned, and it is undefined which one. Use
 `req.get_param_as_list()` to retrieve all the values.

 Args:
 name (str): Parameter name, case-sensitive (e.g., 'sort').
 required (bool, optional): Set to ``True`` to raise
 ``HTTPBadRequest`` instead of returning ``None`` when the
 parameter is not found (default ``False``).
 store (dict, optional): A ``dict``-like object in which to place
 the value of the param, but only if the param is present.
 default (any, optional): If the param is not found returns the
 given value instead of None

 Returns:
 str: The value of the param as a string, or ``None`` if param is
 not found and is not required.

 Raises:
 HTTPBadRequest: A required param is missing from the request.

 """

 params = self._params

 # PERF: Use if..in since it is a good all-around performer; we don't
 # know how likely params are to be specified by clients.
 if name in params:
 # NOTE(warsaw): If the key appeared multiple times, it will be
 # stored internally as a list. We do not define which one
 # actually gets returned, but let's pick the last one for grins.
 param = params[name]
 if isinstance(param, list):
 param = param[-1]

 if store is not None:
 store[name] = param

 return param

 if not required:
 return default

 raise HTTPMissingParam(name)

[docs] def get_param_as_int(self, name,
 required=False, min=None, max=None, store=None):
 """Return the value of a query string parameter as an int.

 Args:
 name (str): Parameter name, case-sensitive (e.g., 'limit').
 required (bool, optional): Set to ``True`` to raise
 ``HTTPBadRequest`` instead of returning ``None`` when the
 parameter is not found or is not an integer (default
 ``False``).
 min (int, optional): Set to the minimum value allowed for this
 param. If the param is found and it is less than min, an
 ``HTTPError`` is raised.
 max (int, optional): Set to the maximum value allowed for this
 param. If the param is found and its value is greater than
 max, an ``HTTPError`` is raised.
 store (dict, optional): A ``dict``-like object in which to place
 the value of the param, but only if the param is found
 (default ``None``).

 Returns:
 int: The value of the param if it is found and can be converted to
 an integer. If the param is not found, returns ``None``, unless
 `required` is ``True``.

 Raises
 HTTPBadRequest: The param was not found in the request, even though
 it was required to be there. Also raised if the param's value
 falls outside the given interval, i.e., the value must be in
 the interval: min <= value <= max to avoid triggering an error.

 """

 params = self._params

 # PERF: Use if..in since it is a good all-around performer; we don't
 # know how likely params are to be specified by clients.
 if name in params:
 val = params[name]
 if isinstance(val, list):
 val = val[-1]

 try:
 val = int(val)
 except ValueError:
 msg = 'The value must be an integer.'
 raise HTTPInvalidParam(msg, name)

 if min is not None and val < min:
 msg = 'The value must be at least ' + str(min)
 raise HTTPInvalidParam(msg, name)

 if max is not None and max < val:
 msg = 'The value may not exceed ' + str(max)
 raise HTTPInvalidParam(msg, name)

 if store is not None:
 store[name] = val

 return val

 if not required:
 return None

 raise HTTPMissingParam(name)

[docs] def get_param_as_bool(self, name, required=False, store=None,
 blank_as_true=False):
 """Return the value of a query string parameter as a boolean

 The following boolean strings are supported::

 TRUE_STRINGS = ('true', 'True', 'yes', '1')
 FALSE_STRINGS = ('false', 'False', 'no', '0')

 Args:
 name (str): Parameter name, case-sensitive (e.g., 'detailed').
 required (bool, optional): Set to ``True`` to raise
 ``HTTPBadRequest`` instead of returning ``None`` when the
 parameter is not found or is not a recognized boolean
 string (default ``False``).
 store (dict, optional): A ``dict``-like object in which to place
 the value of the param, but only if the param is found (default
 ``None``).
 blank_as_true (bool): If ``True``, an empty string value will be
 treated as ``True``. Normally empty strings are ignored; if
 you would like to recognize such parameters, you must set the
 `keep_blank_qs_values` request option to ``True``. Request
 options are set globally for each instance of ``falcon.API``
 through the `req_options` attribute.

 Returns:
 bool: The value of the param if it is found and can be converted
 to a ``bool``. If the param is not found, returns ``None``
 unless required is ``True``.

 Raises:
 HTTPBadRequest: A required param is missing from the request.

 """

 params = self._params

 # PERF: Use if..in since it is a good all-around performer; we don't
 # know how likely params are to be specified by clients.
 if name in params:
 val = params[name]
 if isinstance(val, list):
 val = val[-1]

 if val in TRUE_STRINGS:
 val = True
 elif val in FALSE_STRINGS:
 val = False
 elif blank_as_true and not val:
 val = True
 else:
 msg = 'The value of the parameter must be "true" or "false".'
 raise HTTPInvalidParam(msg, name)

 if store is not None:
 store[name] = val

 return val

 if not required:
 return None

 raise HTTPMissingParam(name)

[docs] def get_param_as_list(self, name,
 transform=None, required=False, store=None):
 """Return the value of a query string parameter as a list.

 List items must be comma-separated or must be provided
 as multiple instances of the same param in the query string
 ala *application/x-www-form-urlencoded*.

 Args:
 name (str): Parameter name, case-sensitive (e.g., 'ids').
 transform (callable, optional): An optional transform function
 that takes as input each element in the list as a ``str`` and
 outputs a transformed element for inclusion in the list that
 will be returned. For example, passing ``int`` will
 transform list items into numbers.
 required (bool, optional): Set to ``True`` to raise
 ``HTTPBadRequest`` instead of returning ``None`` when the
 parameter is not found (default ``False``).
 store (dict, optional): A ``dict``-like object in which to place
 the value of the param, but only if the param is found (default
 ``None``).

 Returns:
 list: The value of the param if it is found. Otherwise, returns
 ``None`` unless required is True. Empty list elements will be
 discarded. For example, the following query strings would
 both result in `['1', '3']`::

 things=1,,3
 things=1&things=&things=3

 Raises:
 HTTPBadRequest: A required param is missing from the request.
 HTTPInvalidParam: A transform function raised an instance of
 ``ValueError``.

 """

 params = self._params

 # PERF: Use if..in since it is a good all-around performer; we don't
 # know how likely params are to be specified by clients.
 if name in params:
 items = params[name]

 # NOTE(warsaw): When a key appears multiple times in the request
 # query, it will already be represented internally as a list.
 # NOTE(kgriffs): Likewise for comma-delimited values.
 if not isinstance(items, list):
 items = [items]

 # PERF(kgriffs): Use if-else rather than a DRY approach
 # that sets transform to a passthrough function; avoids
 # function calling overhead.
 if transform is not None:
 try:
 items = [transform(i) for i in items]

 except ValueError:
 msg = 'The value is not formatted correctly.'
 raise HTTPInvalidParam(msg, name)

 if store is not None:
 store[name] = items

 return items

 if not required:
 return None

 raise HTTPMissingParam(name)

[docs] def get_param_as_date(self, name, format_string='%Y-%m-%d',
 required=False, store=None):
 """Return the value of a query string parameter as a date.

 Args:
 name (str): Parameter name, case-sensitive (e.g., 'ids').
 format_string (str): String used to parse the param value into a
 date.
 Any format recognized by strptime() is supported.
 (default ``"%Y-%m-%d"``)
 required (bool, optional): Set to ``True`` to raise
 ``HTTPBadRequest`` instead of returning ``None`` when the
 parameter is not found (default ``False``).
 store (dict, optional): A ``dict``-like object in which to place
 the value of the param, but only if the param is found (default
 ``None``).
 Returns:
 datetime.date: The value of the param if it is found and can be
 converted to a ``date`` according to the supplied format
 string. If the param is not found, returns ``None`` unless
 required is ``True``.

 Raises:
 HTTPBadRequest: A required param is missing from the request.
 HTTPInvalidParam: A transform function raised an instance of
 ``ValueError``.
 """

 param_value = self.get_param(name, required=required)

 if param_value is None:
 return None

 try:
 date = strptime(param_value, format_string).date()
 except ValueError:
 msg = 'The date value does not match the required format'
 raise HTTPInvalidParam(msg, name)

 if store is not None:
 store[name] = date

 return date

[docs] def log_error(self, message):
 """Write an error message to the server's log.

 Prepends timestamp and request info to message, and writes the
 result out to the WSGI server's error stream (`wsgi.error`).

 Args:
 message (str or unicode): Description of the problem. On Python 2,
 instances of ``unicode`` will be converted to UTF-8.

 """

 if self.query_string:
 query_string_formatted = '?' + self.query_string
 else:
 query_string_formatted = ''

 log_line = (
 DEFAULT_ERROR_LOG_FORMAT.
 format(now(), self.method, self.path, query_string_formatted)
)

 if six.PY3:
 self._wsgierrors.write(log_line + message + '\n')
 else:
 if isinstance(message, unicode):
 message = message.encode('utf-8')

 self._wsgierrors.write(log_line.encode('utf-8'))
 self._wsgierrors.write(message + '\n')

 # --
 # Helpers
 # --

 def _wrap_stream(self):
 try:
 content_length = self.content_length or 0

 # NOTE(kgriffs): This branch is indeed covered in test_wsgi.py
 # even though coverage isn't able to detect it.
 except HTTPInvalidHeader: # pragma: no cover
 # NOTE(kgriffs): The content-length header was specified,
 # but it had an invalid value. Assume no content.
 content_length = 0

 self.stream = helpers.Body(self.stream, content_length)

 def _parse_form_urlencoded(self):
 # NOTE(kgriffs): This assumes self.stream has been patched
 # above in the case of wsgiref, so that self.content_length
 # is not needed. Normally we just avoid accessing
 # self.content_length, because it is a little expensive
 # to call. We could cache self.content_length, but the
 # overhead to do that won't usually be helpful, since
 # content length will only ever be read once per
 # request in most cases.
 body = self.stream.read()

 # NOTE(kgriffs): According to http://goo.gl/6rlcux the
 # body should be US-ASCII. Enforcing this also helps
 # catch malicious input.
 try:
 body = body.decode('ascii')
 except UnicodeDecodeError:
 body = None
 self.log_error('Non-ASCII characters found in form body '
 'with Content-Type of '
 'application/x-www-form-urlencoded. Body '
 'will be ignored.')

 if body:
 extra_params = parse_query_string(
 body,
 keep_blank_qs_values=self.options.keep_blank_qs_values,
)

 self._params.update(extra_params)

 def _parse_rfc_forwarded(self):
 """Parse RFC 7239 "Forwarded" header.

 Returns:
 list: addresses derived from "for" parameters.
 """

 addr = []

 for forwarded in self.env['HTTP_FORWARDED'].split(','):
 for param in forwarded.split(';'):
 # PERF(kgriffs): Partition() is faster than split().
 key, _, val = param.strip().partition('=')
 if not val:
 # NOTE(kgriffs): The '=' separator was not found or
 # it was, but the value was missing.
 continue

 if key.lower() != 'for':
 # We only want "for" params
 continue

 host, _ = parse_host(unquote_string(val))
 addr.append(host)

 return addr

PERF: To avoid typos and improve storage space and speed over a dict.
[docs]class RequestOptions(object):
 """This class is a container for ``Request`` options.

 Attributes:
 keep_blank_qs_values (bool): Set to ``True`` in order to retain
 blank values in query string parameters (default ``False``).
 auto_parse_form_urlencoded: Set to ``True`` in order to
 automatically consume the request stream and merge the
 results into the request's query string params when the
 request's content type is
 application/x-www-form-urlencoded (default ``False``). In
 this case, the request's content stream will be left at EOF.

 Note:
 The character encoding for fields, before
 percent-encoding non-ASCII bytes, is assumed to be
 UTF-8. The special `_charset_` field is ignored if present.

 Falcon expects form-encoded request bodies to be
 encoded according to the standard W3C algorithm (see
 also http://goo.gl/6rlcux).

 """
 __slots__ = (
 'keep_blank_qs_values',
 'auto_parse_form_urlencoded',
)

 def __init__(self):
 self.keep_blank_qs_values = False
 self.auto_parse_form_urlencoded = False

 Created using Sphinx 1.3.5.

_modules/falcon/redirects.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.redirects

Copyright 2015 by Kurt Griffiths
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import falcon
from falcon.http_status import HTTPStatus

[docs]class HTTPMovedPermanently(HTTPStatus):
 """301 Moved Permanently.

 The 301 (Moved Permanently) status code indicates that the target
 resource has been assigned a new permanent URI.

 Note:
 For historical reasons, a user agent MAY change the request
 method from POST to GET for the subsequent request. If this
 behavior is undesired, the 308 (Permanent Redirect) status code
 can be used instead.

 See also: https://tools.ietf.org/html/rfc7231#section-6.4.2

 Args:
 location (str): URI to provide as the Location header in the
 response.
 """

 def __init__(self, location):
 super(HTTPMovedPermanently, self).__init__(
 falcon.HTTP_301, {'location': location})

[docs]class HTTPFound(HTTPStatus):
 """302 Found.

 The 302 (Found) status code indicates that the target resource
 resides temporarily under a different URI. Since the redirection
 might be altered on occasion, the client ought to continue to use the
 effective request URI for future requests.

 Note:
 For historical reasons, a user agent MAY change the request
 method from POST to GET for the subsequent request. If this
 behavior is undesired, the 307 (Temporary Redirect) status code
 can be used instead.

 See also: https://tools.ietf.org/html/rfc7231#section-6.4.3

 Args:
 location (str): URI to provide as the Location header in the
 response.
 """

 def __init__(self, location):
 super(HTTPFound, self).__init__(
 falcon.HTTP_302, {'location': location})

[docs]class HTTPSeeOther(HTTPStatus):
 """303 See Other.

 The 303 (See Other) status code indicates that the server is
 redirecting the user agent to a *different* resource, as indicated
 by a URI in the Location header field, which is intended to provide
 an indirect response to the original request.

 A 303 response to a GET request indicates that the origin server
 does not have a representation of the target resource that can be
 transferred over HTTP. However, the Location header in the response
 may be dereferenced to obtain a representation for an alternative
 resource. The recipient may find this alternative useful, even
 though it does not represent the original target resource.

 Note:
 The new URI in the Location header field is not considered
 equivalent to the effective request URI.

 See also: https://tools.ietf.org/html/rfc7231#section-6.4.4

 Args:
 location (str): URI to provide as the Location header in the
 response.
 """

 def __init__(self, location):
 super(HTTPSeeOther, self).__init__(
 falcon.HTTP_303, {'location': location})

[docs]class HTTPTemporaryRedirect(HTTPStatus):
 """307 Temporary Redirect.

 The 307 (Temporary Redirect) status code indicates that the target
 resource resides temporarily under a different URI and the user
 agent MUST NOT change the request method if it performs an automatic
 redirection to that URI. Since the redirection can change over
 time, the client ought to continue using the original effective
 request URI for future requests.

 Note:
 This status code is similar to 302 (Found), except that it
 does not allow changing the request method from POST to GET.

 See also: https://tools.ietf.org/html/rfc7231#section-6.4.7

 Args:
 location (str): URI to provide as the Location header in the
 response.
 """

 def __init__(self, location):
 super(HTTPTemporaryRedirect, self).__init__(
 falcon.HTTP_307, {'location': location})

[docs]class HTTPPermanentRedirect(HTTPStatus):
 """308 Permanent Redirect.

 The 308 (Permanent Redirect) status code indicates that the target
 resource has been assigned a new permanent URI.

 Note:
 This status code is similar to 301 (Moved Permanently), except
 that it does not allow changing the request method from POST to
 GET.

 See also: https://tools.ietf.org/html/rfc7238#section-3

 Args:
 location (str): URI to provide as the Location header in the
 response.
 """

 def __init__(self, location):
 super(HTTPPermanentRedirect, self).__init__(
 falcon.HTTP_308, {'location': location})

 Created using Sphinx 1.3.5.

_images/my-web-app.gif
Single-page App SDK =

WSGI Server (uWSGI, Gunicorn, etc.)

My API (WSGI App)

My Hooks /\ My Error

Handlers
Falcon

My Resource

Classes V My Utilities

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 All modules for which code is available

		falcon.api

		falcon.errors

		falcon.hooks

		falcon.http_error

		falcon.http_status

		falcon.redirects

		falcon.request

		falcon.response

		falcon.routing.compiled

		falcon.routing.util

		falcon.testing.base

		falcon.testing.helpers

		falcon.testing.resource

		falcon.testing.srmock

		falcon.testing.test_case

		falcon.util.misc

		falcon.util.time

		falcon.util.uri

 Created using Sphinx 1.3.5.

_modules/falcon/api.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.api

Copyright 2013 by Rackspace Hosting, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import inspect
import re
import six

from falcon import api_helpers as helpers
from falcon import DEFAULT_MEDIA_TYPE
from falcon.http_error import HTTPError
from falcon.http_status import HTTPStatus
from falcon.request import Request, RequestOptions
from falcon.response import Response
import falcon.responders
from falcon import routing
import falcon.status_codes as status

[docs]class API(object):
 """This class is the main entry point into a Falcon-based app.

 Each API instance provides a callable WSGI interface and a routing engine.

 Args:
 media_type (str, optional): Default media type to use as the value for
 the Content-Type header on responses (default 'application/json').
 middleware(object or list, optional): One or more objects
 (instantiated classes) that implement the following middleware
 component interface::

 class ExampleComponent(object):
 def process_request(self, req, resp):
 \"""Process the request before routing it.

 Args:
 req: Request object that will eventually be
 routed to an on_* responder method.
 resp: Response object that will be routed to
 the on_* responder.
 \"""

 def process_resource(self, req, resp, resource, params):
 \"""Process the request and resource *after* routing.

 Note:
 This method is only called when the request matches
 a route to a resource.

 Args:
 req: Request object that will be passed to the
 routed responder.
 resp: Response object that will be passed to the
 responder.
 resource: Resource object to which the request was
 routed. May be None if no route was found for
 the request.
 params: A dict-like object representing any
 additional params derived from the route's URI
 template fields, that will be passed to the
 resource's responder method as keyword
 arguments.
 \"""

 def process_response(self, req, resp, resource)
 \"""Post-processing of the response (after routing).

 Args:
 req: Request object.
 resp: Response object.
 resource: Resource object to which the request was
 routed. May be None if no route was found
 for the request.
 \"""

 See also :ref:`Middleware <middleware>`.

 request_type (Request, optional): ``Request``-like class to use instead
 of Falcon's default class. Among other things, this feature
 affords inheriting from ``falcon.request.Request`` in order
 to override the ``context_type`` class variable.
 (default ``falcon.request.Request``)

 response_type (Response, optional): ``Response``-like class to use
 instead of Falcon's default class. (default
 ``falcon.response.Response``)

 router (object, optional): An instance of a custom router
 to use in lieu of the default engine.
 See also: :ref:`Routing <routing>`.

 Attributes:
 req_options (RequestOptions): A set of behavioral options related to
 incoming requests.
 """

 # PERF(kgriffs): Reference via self since that is faster than
 # module global...
 _BODILESS_STATUS_CODES = set([
 status.HTTP_100,
 status.HTTP_101,
 status.HTTP_204,
 status.HTTP_304
])

 _STREAM_BLOCK_SIZE = 8 * 1024 # 8 KiB

 __slots__ = ('_request_type', '_response_type',
 '_error_handlers', '_media_type', '_router', '_sinks',
 '_serialize_error', 'req_options', '_middleware')

 def __init__(self, media_type=DEFAULT_MEDIA_TYPE,
 request_type=Request, response_type=Response,
 middleware=None, router=None):
 self._sinks = []
 self._media_type = media_type

 # set middleware
 self._middleware = helpers.prepare_middleware(middleware)

 self._router = router or routing.DefaultRouter()

 self._request_type = request_type
 self._response_type = response_type

 self._error_handlers = []
 self._serialize_error = helpers.default_serialize_error
 self.req_options = RequestOptions()

 def __call__(self, env, start_response):
 """WSGI `app` method.

 Makes instances of API callable from a WSGI server. May be used to
 host an API or called directly in order to simulate requests when
 testing the API.

 See also PEP 3333.

 Args:
 env (dict): A WSGI environment dictionary
 start_response (callable): A WSGI helper function for setting
 status and headers on a response.

 """

 req = self._request_type(env, options=self.req_options)
 resp = self._response_type()
 resource = None
 middleware_stack = [] # Keep track of executed components
 params = {}

 try:
 # NOTE(kgriffs): Using an inner try..except in order to
 # address the case when err_handler raises HTTPError.

 # NOTE(kgriffs): Coverage is giving false negatives,
 # so disabled on relevant lines. All paths are tested
 # afaict.
 try:
 # NOTE(ealogar): The execution of request middleware should be
 # before routing. This will allow request mw to modify path.
 self._call_req_mw(middleware_stack, req, resp)
 # NOTE(warsaw): Moved this to inside the try except because it
 # is possible when using object-based traversal for
 # _get_responder() to fail. An example is a case where an
 # object does not have the requested next-hop child resource.
 # In that case, the object being asked to dispatch to its
 # child will raise an HTTP exception signalling the problem,
 # e.g. a 404.
 responder, params, resource = self._get_responder(req)

 # NOTE(kgriffs): If the request did not match any route,
 # a default responder is returned and the resource is
 # None.
 if resource is not None:
 self._call_rsrc_mw(middleware_stack, req, resp, resource,
 params)

 responder(req, resp, **params)
 self._call_resp_mw(middleware_stack, req, resp, resource)

 except Exception as ex:
 for err_type, err_handler in self._error_handlers:
 if isinstance(ex, err_type):
 err_handler(ex, req, resp, params)
 self._call_resp_mw(middleware_stack, req, resp,
 resource)

 break

 else:
 # PERF(kgriffs): This will propagate HTTPError to
 # the handler below. It makes handling HTTPError
 # less efficient, but that is OK since error cases
 # don't need to be as fast as the happy path, and
 # indeed, should perhaps be slower to create
 # backpressure on clients that are issuing bad
 # requests.

 # NOTE(ealogar): This will executed remaining
 # process_response when no error_handler is given
 # and for whatever exception. If an HTTPError is raised
 # remaining process_response will be executed later.
 self._call_resp_mw(middleware_stack, req, resp, resource)
 raise

 except HTTPStatus as ex:
 self._compose_status_response(req, resp, ex)
 self._call_resp_mw(middleware_stack, req, resp, resource)

 except HTTPError as ex:
 self._compose_error_response(req, resp, ex)
 self._call_resp_mw(middleware_stack, req, resp, resource)

 #
 # Set status and headers
 #
 if req.method == 'HEAD' or resp.status in self._BODILESS_STATUS_CODES:
 body = []
 else:
 body, length = self._get_body(resp, env.get('wsgi.file_wrapper'))
 if length is not None:
 resp._headers['content-length'] = str(length)

 # NOTE(kgriffs): Based on wsgiref.validate's interpretation of
 # RFC 2616, as commented in that module's source code. The
 # presence of the Content-Length header is not similarly
 # enforced.
 if resp.status in (status.HTTP_204, status.HTTP_304):
 media_type = None
 else:
 media_type = self._media_type

 headers = resp._wsgi_headers(media_type)

 # Return the response per the WSGI spec
 start_response(resp.status, headers)
 return body

[docs] def add_route(self, uri_template, resource, *args, **kwargs):
 """Associates a templatized URI path with a resource.

 A resource is an instance of a class that defines various
 "responder" methods, one for each HTTP method the resource
 allows. Responder names start with `on_` and are named according to
 which HTTP method they handle, as in `on_get`, `on_post`, `on_put`,
 etc.

 If your resource does not support a particular
 HTTP method, simply omit the corresponding responder and
 Falcon will reply with "405 Method not allowed" if that
 method is ever requested.

 Responders must always define at least two arguments to receive
 request and response objects, respectively. For example::

 def on_post(self, req, resp):
 pass

 In addition, if the route's template contains field
 expressions, any responder that desires to receive requests
 for that route must accept arguments named after the respective
 field names defined in the template. A field expression consists
 of a bracketed field name.

 For example, given the following template::

 /user/{name}

 A PUT request to "/user/kgriffs" would be routed to::

 def on_put(self, req, resp, name):
 pass

 Individual path segments may contain one or more field expressions.
 For example::

 /repos/{org}/{repo}/compare/{usr0}:{branch0}...{usr1}:{branch1}

 Args:
 uri_template (str): A templatized URI. Care must be
 taken to ensure the template does not mask any sink
 patterns, if any are registered (see also `add_sink`).
 resource (instance): Object which represents a REST
 resource. Falcon will pass "GET" requests to on_get,
 "PUT" requests to on_put, etc. If any HTTP methods are not
 supported by your resource, simply don't define the
 corresponding request handlers, and Falcon will do the right
 thing.

 Note:
 Any additional args and kwargs not defined above are passed
 through to the underlying router's ``add_route()`` method. The
 default router does not expect any additional arguments, but
 custom routers may take advantage of this feature to receive
 additional options when setting up routes.

 """

 # NOTE(richardolsson): Doing the validation here means it doesn't have
 # to be duplicated in every future router implementation.
 if not isinstance(uri_template, six.string_types):
 raise TypeError('uri_template is not a string')

 if not uri_template.startswith('/'):
 raise ValueError("uri_template must start with '/'")

 if '//' in uri_template:
 raise ValueError("uri_template may not contain '//'")

 method_map = routing.create_http_method_map(resource)
 self._router.add_route(uri_template, method_map, resource, *args,
 **kwargs)

[docs] def add_sink(self, sink, prefix=r'/'):
 """Registers a sink method for the API.

 If no route matches a request, but the path in the requested URI
 matches a sink prefix, Falcon will pass control to the
 associated sink, regardless of the HTTP method requested.

 Using sinks, you can drain and dynamically handle a large number
 of routes, when creating static resources and responders would be
 impractical. For example, you might use a sink to create a smart
 proxy that forwards requests to one or more backend services.

 Args:
 sink (callable): A callable taking the form ``func(req, resp)``.

 prefix (str): A regex string, typically starting with '/', which
 will trigger the sink if it matches the path portion of the
 request's URI. Both strings and precompiled regex objects
 may be specified. Characters are matched starting at the
 beginning of the URI path.

 Note:
 Named groups are converted to kwargs and passed to
 the sink as such.

 Warning:
 If the prefix overlaps a registered route template,
 the route will take precedence and mask the sink
 (see also `add_route`).

 """

 if not hasattr(prefix, 'match'):
 # Assume it is a string
 prefix = re.compile(prefix)

 # NOTE(kgriffs): Insert at the head of the list such that
 # in the case of a duplicate prefix, the last one added
 # is preferred.
 self._sinks.insert(0, (prefix, sink))

[docs] def add_error_handler(self, exception, handler=None):
 """Registers a handler for a given exception error type.

 Args:
 exception (type): Whenever an error occurs when handling a request
 that is an instance of this exception class, the associated
 handler will be called.
 handler (callable): A function or callable object taking the form
 ``func(ex, req, resp, params)``.

 If not specified explicitly, the handler will default to
 ``exception.handle``, where ``exception`` is the error
 type specified above, and ``handle`` is a static method
 (i.e., decorated with @staticmethod) that accepts
 the same params just described. For example::

 class CustomException(CustomBaseException):

 @staticmethod
 def handle(ex, req, resp, params):
 # TODO: Log the error
 # Convert to an instance of falcon.HTTPError
 raise falcon.HTTPError(falcon.HTTP_792)

 Note:
 A handler can either raise an instance of ``HTTPError``
 or modify `resp` manually in order to communicate
 information about the issue to the client.

 """

 if handler is None:
 try:
 handler = exception.handle
 except AttributeError:
 raise AttributeError('handler must either be specified '
 'explicitly or defined as a static'
 'method named "handle" that is a '
 'member of the given exception class.')

 # Insert at the head of the list in case we get duplicate
 # adds (will cause the most recently added one to win).
 self._error_handlers.insert(0, (exception, handler))

[docs] def set_error_serializer(self, serializer):
 """Override the default serializer for instances of HTTPError.

 When a responder raises an instance of HTTPError, Falcon converts
 it to an HTTP response automatically. The default serializer
 supports JSON and XML, but may be overridden by this method to
 use a custom serializer in order to support other media types.

 The ``falcon.HTTPError`` class contains helper methods, such as
 `to_json()` and `to_dict()`, that can be used from within
 custom serializers. For example::

 def my_serializer(req, resp, exception):
 representation = None

 preferred = req.client_prefers(('application/x-yaml',
 'application/json'))

 if preferred is not None:
 if preferred == 'application/json':
 representation = exception.to_json()
 else:
 representation = yaml.dump(exception.to_dict(),
 encoding=None)
 resp.body = representation
 resp.content_type = preferred

 Note:
 If a custom media type is used and the type includes a
 "+json" or "+xml" suffix, the default serializer will
 convert the error to JSON or XML, respectively. If this
 is not desirable, a custom error serializer may be used
 to override this behavior.

 Args:
 serializer (callable): A function taking the form
 ``func(req, resp, exception)``, where `req` is the request
 object that was passed to the responder method, `resp` is
 the response object, and `exception` is an instance of
 ``falcon.HTTPError``.

 """

 if len(inspect.getargspec(serializer).args) == 2:
 serializer = helpers.wrap_old_error_serializer(serializer)
 self._serialize_error = serializer

 # --
 # Helpers that require self
 # --

 def _get_responder(self, req):
 """Searches routes for a matching responder.

 Args:
 req: The request object.

 Returns:
 A 3-member tuple consisting of a responder callable,
 a ``dict`` containing parsed path fields (if any were specified in
 the matching route's URI template), and a reference to the
 responder's resource instance.

 Note:
 If a responder was matched to the given URI, but the HTTP
 method was not found in the method_map for the responder,
 the responder callable element of the returned tuple will be
 `falcon.responder.bad_request`.

 Likewise, if no responder was matched for the given URI, then
 the responder callable element of the returned tuple will be
 `falcon.responder.path_not_found`
 """

 path = req.path
 method = req.method

 route = self._router.find(path)

 if route is not None:
 resource, method_map, params = route
 else:
 # NOTE(kgriffs): Older routers may indicate that no route
 # was found by returning (None, None, None). Therefore, we
 # normalize resource as the flag to indicate whether or not
 # a route was found, for the sake of backwards-compat.
 resource = None

 if resource is not None:
 try:
 responder = method_map[method]
 except KeyError:
 responder = falcon.responders.bad_request
 else:
 params = {}

 for pattern, sink in self._sinks:
 m = pattern.match(path)
 if m:
 params = m.groupdict()
 responder = sink

 break
 else:
 responder = falcon.responders.path_not_found

 return (responder, params, resource)

 def _compose_status_response(self, req, resp, http_status):
 """Composes a response for the given HTTPStatus instance."""

 # PERF(kgriffs): The code to set the status and headers is identical
 # to that used in _compose_error_response(), but refactoring in the
 # name of DRY isn't worth the extra CPU cycles.
 resp.status = http_status.status

 if http_status.headers is not None:
 resp.set_headers(http_status.headers)

 # NOTE(kgriffs): If http_status.body is None, that's OK because
 # it's acceptable to set resp.body to None (to indicate no body).
 resp.body = http_status.body

 def _compose_error_response(self, req, resp, error):
 """Composes a response for the given HTTPError instance."""

 resp.status = error.status

 if error.headers is not None:
 resp.set_headers(error.headers)

 if error.has_representation:
 self._serialize_error(req, resp, error)

 def _call_req_mw(self, stack, req, resp):
 """Run process_request middleware methods."""

 for component in self._middleware:
 process_request, _, _ = component
 if process_request is not None:
 process_request(req, resp)

 # Put executed component on the stack
 stack.append(component) # keep track from outside

 def _call_rsrc_mw(self, stack, req, resp, resource, params):
 """Run process_resource middleware methods."""

 for component in self._middleware:
 _, process_resource, _ = component
 if process_resource is not None:
 process_resource(req, resp, resource, params)

 def _call_resp_mw(self, stack, req, resp, resource):
 """Run process_response middleware."""

 while stack:
 _, _, process_response = stack.pop()
 if process_response is not None:
 process_response(req, resp, resource)

 # PERF(kgriffs): Moved from api_helpers since it is slightly faster
 # to call using self, and this function is called for most
 # requests.
 def _get_body(self, resp, wsgi_file_wrapper=None):
 """Converts resp content into an iterable as required by PEP 333

 Args:
 resp: Instance of falcon.Response
 wsgi_file_wrapper: Reference to wsgi.file_wrapper from the
 WSGI environ dict, if provided by the WSGI server. Used
 when resp.stream is a file-like object (default None).

 Returns:
 A two-member tuple of the form (iterable, content_length).
 The length is returned as ``None`` when unknown. The
 iterable is determined as follows:

 * If resp.body is not ``None``, returns [resp.body],
 encoded as UTF-8 if it is a Unicode string.
 Bytestrings are returned as-is.
 * If resp.data is not ``None``, returns [resp.data]
 * If resp.stream is not ``None``, returns resp.stream
 iterable using wsgi.file_wrapper, if possible.
 * Otherwise, returns []

 """

 body = resp.body
 if body is not None:
 if not isinstance(body, bytes):
 body = body.encode('utf-8')

 return [body], len(body)

 data = resp.data
 if data is not None:
 return [data], len(data)

 stream = resp.stream
 if stream is not None:
 # NOTE(kgriffs): Heuristic to quickly check if stream is
 # file-like. Not perfect, but should be good enough until
 # proven otherwise.
 if hasattr(stream, 'read'):
 if wsgi_file_wrapper is not None:
 # TODO(kgriffs): Make block size configurable at the
 # global level, pending experimentation to see how
 # useful that would be. See also the discussion on
 # this GitHub PR: http://goo.gl/XGrtDz
 iterable = wsgi_file_wrapper(stream,
 self._STREAM_BLOCK_SIZE)
 else:
 iterable = iter(
 lambda: stream.read(self._STREAM_BLOCK_SIZE),
 b''
)
 else:
 iterable = stream

 # NOTE(kgriffs): If resp.stream_len is None, content_length
 # will be as well; the caller of _get_body must handle this
 # case by not setting the Content-Length header.
 return iterable, resp.stream_len

 return [], 0

 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_modules/falcon/testing/resource.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.testing.resource

Copyright 2013 by Rackspace Hosting, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

from json import dumps as json_dumps

import falcon
from .helpers import rand_string

[docs]def capture_responder_args(req, resp, resource, params):
 """Before hook for capturing responder arguments.

 Adds the following attributes to the hooked responder's resource
 class:

 * captured_req
 * captured_resp
 * captured_kwargs
 """

 resource.captured_req = req
 resource.captured_resp = resp
 resource.captured_kwargs = params

def set_resp_defaults(req, resp, resource, params):
 """Before hook for setting default response properties."""

 if resource._default_status is not None:
 resp.status = resource._default_status

 if resource._default_body is not None:
 resp.body = resource._default_body

 if resource._default_headers is not None:
 resp.set_headers(resource._default_headers)

[docs]class SimpleTestResource(object):
 """Mock resource for functional testing of framework components.

 This class implements a simple test resource that can be extended
 as needed to test middleware, hooks, and the Falcon framework
 itself.

 Only the ``on_get()`` responder is implemented; when adding
 additional responders in child classes, they can be decorated
 with the :py:meth:`falcon.testing.capture_responder_args` hook in
 order to capture the *req*, *resp*, and *params* arguments that
 are passed to the responder. Responders may also be decorated with
 the :py:meth:`falcon.testing.set_resp_defaults` hook in order to
 set *resp* properties to default *status*, *body*, and *header*
 values.

 Keyword Arguments:
 status (str): Default status string to use in responses
 body (str): Default body string to use in responses
 json (dict): Default JSON document to use in responses. Will
 be serialized to a string and encoded as UTF-8. Either
 json or *body* may be specified, but not both.
 headers (dict): Default set of additional headers to include in
 responses

 Attributes:
 captured_req (falcon.Request): The last Request object passed
 into any one of the responder methods.
 captured_resp (falcon.Response): The last Response object passed
 into any one of the responder methods.
 captured_kwargs (dict): The last dictionary of kwargs, beyond
 ``req`` and ``resp``, that were passed into any one of the
 responder methods.
 """

 def __init__(self, status=None, body=None, json=None, headers=None):
 self._default_status = status
 self._default_headers = headers

 if json is not None:
 if body is not None:
 msg = 'Either json or body may be specified, but not both'
 raise ValueError(msg)

 self._default_body = json_dumps(json, ensure_ascii=False)

 else:
 self._default_body = body

 @falcon.before(capture_responder_args)
 @falcon.before(set_resp_defaults)
 def on_get(self, req, resp, **kwargs):
 pass

[docs]class TestResource(object):
 """Mock resource for functional testing.

 Warning:
 This class is deprecated and will be removed in a future
 release. Please use :py:class:`~.SimpleTestResource`
 instead.

 This class implements the `on_get` responder, captures
 request data, and sets response body and headers.

 Child classes may add additional methods and attributes as
 needed.

 Attributes:
 sample_status (str): HTTP status to set in the response
 sample_body (str): Random body string to set in the response
 resp_headers (dict): Sample headers to use in the response

 req (falcon.Request): Request object passed into the `on_get`
 responder.
 resp (falcon.Response): Response object passed into the `on_get`
 responder.
 kwargs (dict): Keyword arguments passed into the `on_get`
 responder, if any.
 called (bool): ``True`` if `on_get` was ever called; ``False``
 otherwise.
 """

 sample_status = '200 OK'
 sample_body = rand_string(0, 128 * 1024)
 resp_headers = {
 'Content-Type': 'text/plain; charset=UTF-8',
 'ETag': '10d4555ebeb53b30adf724ca198b32a2',
 'X-Hello': 'OH HAI'
 }

 def __init__(self):
 """Initializes called to False"""

 self.called = False

[docs] def on_get(self, req, resp, **kwargs):
 """GET responder.

 Captures `req`, `resp`, and `kwargs`. Also sets up a sample response.

 Args:
 req: Falcon ``Request`` instance.
 resp: Falcon ``Response`` instance.
 kwargs: URI template *name=value* pairs, if any, along with
 any extra args injected by middleware.

 """

 # Don't try this at home - classes aren't recreated
 # for every request
 self.req, self.resp, self.kwargs = req, resp, kwargs

 self.called = True
 resp.status = falcon.HTTP_200
 resp.body = self.sample_body
 resp.set_headers(self.resp_headers)

 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/file.png

_static/plus.png

_modules/falcon/util/time.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.util.time

import datetime

[docs]class TimezoneGMT(datetime.tzinfo):
 """GMT timezone class implementing the :py:class:`datetime.tzinfo` interface."""

 GMT_ZERO = datetime.timedelta(hours=0)

[docs] def utcoffset(self, dt):
 """Get the offset from UTC.

 Args:
 dt(datetime.datetime): Ignored

 Returns:
 datetime.timedelta: GMT offset, which is equivalent to UTC and
 so is aways 0.
 """

 return self.GMT_ZERO

[docs] def tzname(self, dt):
 """Get the name of this timezone.

 Args:
 dt(datetime.datetime): Ignored

 Returns:
 str: "GMT"
 """

 return 'GMT'

[docs] def dst(self, dt):
 """Return the daylight saving time (DST) adjustment.

 Args:
 dt(datetime.datetime): Ignored

 Returns:
 datetime.timedelta: DST adjustment for GMT, which is always 0.
 """

 return self.GMT_ZERO

 Created using Sphinx 1.3.5.

_static/up-pressed.png

_themes/README.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

krTheme Sphinx Style

This repository contains sphinx styles Kenneth Reitz uses in most of
his projects. It is a drivative of Mitsuhiko’s themes for Flask and Flask related
projects. To use this style in your Sphinx documentation, follow
this guide:

		put this folder as _themes into your docs folder. Alternatively
you can also use git submodules to check out the contents there.

		add this to your conf.py:

sys.path.append(os.path.abspath('_themes'))
html_theme_path = ['_themes']
html_theme = 'kr'

The following themes exist:

		kr

		the standard flask documentation theme for large projects

		kr_small

		small one-page theme. Intended to be used by very small addon libraries.

 Created using Sphinx 1.3.5.

_modules/falcon/util/uri.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.util.uri

Copyright 2013 by Rackspace Hosting, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import six

NOTE(kgriffs): See also RFC 3986
_UNRESERVED = ('ABCDEFGHIJKLMNOPQRSTUVWXYZ'
 'abcdefghijklmnopqrstuvwxyz'
 '0123456789'
 '-._~')

NOTE(kgriffs): See also RFC 3986
_DELIMITERS = ":/?#[]@!$&'()*+,;="
_ALL_ALLOWED = _UNRESERVED + _DELIMITERS

_HEX_DIGITS = '0123456789ABCDEFabcdef'

def _create_char_encoder(allowed_chars):

 lookup = {}

 for code_point in range(256):
 if chr(code_point) in allowed_chars:
 encoded_char = chr(code_point)
 else:
 encoded_char = '%{0:02X}'.format(code_point)

 # NOTE(kgriffs): PY2 returns str from uri.encode, while
 # PY3 returns a byte array.
 key = chr(code_point) if six.PY2 else code_point
 lookup[key] = encoded_char

 return lookup.__getitem__

def _create_str_encoder(is_value):

 allowed_chars = _UNRESERVED if is_value else _ALL_ALLOWED
 encode_char = _create_char_encoder(allowed_chars)

 def encoder(uri):
 # PERF(kgriffs): Very fast way to check, learned from urlib.quote
 if not uri.rstrip(allowed_chars):
 return uri

 # Convert to a byte array if it is not one already
 #
 # NOTE(kgriffs): Code coverage disabled since in Py3K the uri
 # is always a text type, so we get a failure for that tox env.
 if isinstance(uri, six.text_type):
 uri = uri.encode('utf-8')

 # Use our map to encode each char and join the result into a new uri
 #
 # PERF(kgriffs): map is faster than list comp on py27, but a tiny bit
 # slower on py33. Since we are already much faster than urllib on
 # py33, let's optimize for py27.
 return ''.join(map(encode_char, uri))

 return encoder

encode = _create_str_encoder(False)
encode.__name__ = 'encode'
encode.__doc__ = """Encodes a full or relative URI according to RFC 3986.

RFC 3986 defines a set of "unreserved" characters as well as a
set of "reserved" characters used as delimiters. This function escapes
all other "disallowed" characters by percent-encoding them.

Note:
 This utility is faster in the average case than the similar
 `quote` function found in ``urlib``. It also strives to be easier
 to use by assuming a sensible default of allowed characters.

Args:
 uri (str): URI or part of a URI to encode. If this is a wide
 string (i.e., ``six.text_type``), it will be encoded to
 a UTF-8 byte array and any multibyte sequences will
 be percent-encoded as-is.

Returns:
 str: An escaped version of `uri`, where all disallowed characters
 have been percent-encoded.

"""

encode_value = _create_str_encoder(True)
encode_value.name = 'encode_value'
encode_value.__doc__ = """Encodes a value string according to RFC 3986.

Disallowed characters are percent-encoded in a way that models
``urllib.parse.quote(safe="~")``. However, the Falcon function is faster
in the average case than the similar `quote` function found in urlib.
It also strives to be easier to use by assuming a sensible default
of allowed characters.

All reserved characters are lumped together into a single set of
"delimiters", and everything in that set is escaped.

Note:
 RFC 3986 defines a set of "unreserved" characters as well as a
 set of "reserved" characters used as delimiters.

Args:
 uri (str): URI fragment to encode. It is assumed not to cross delimiter
 boundaries, and so any reserved URI delimiter characters
 included in it will be escaped. If `value` is a wide
 string (i.e., ``six.text_type``), it will be encoded to
 a UTF-8 byte array and any multibyte sequences will
 be percent-encoded as-is.

Returns:
 str: An escaped version of `uri`, where all disallowed characters
 have been percent-encoded.

"""

if six.PY2:

 # This map construction is based on urllib
 _HEX_TO_BYTE = dict((a + b, (chr(int(a + b, 16)), int(a + b, 16)))
 for a in _HEX_DIGITS
 for b in _HEX_DIGITS)

 def decode(encoded_uri):
 """Decodes percent-encoded characters in a URI or query string.

 This function models the behavior of `urllib.parse.unquote_plus`, but
 is faster. It is also more robust, in that it will decode escaped
 UTF-8 mutibyte sequences.

 Args:
 encoded_uri (str): An encoded URI (full or partial).

 Returns:
 str: A decoded URL. Will be of type ``unicode`` on Python 2 IFF the
 URL contained escaped non-ASCII characters, in which case
 UTF-8 is assumed per RFC 3986.

 """

 decoded_uri = encoded_uri

 # PERF(kgriffs): Don't take the time to instantiate a new
 # string unless we have to.
 if '+' in decoded_uri:
 decoded_uri = decoded_uri.replace('+', ' ')

 # Short-circuit if we can
 if '%' not in decoded_uri:
 return decoded_uri

 # Convert to bytes because we are about to replace chars and we
 # don't want Python to mistakenly interpret any high bits.
 if not isinstance(decoded_uri, str):
 # NOTE(kgriffs): Clients should never submit a URI that has
 # unescaped non-ASCII chars in them, but just in case they
 # do, let's encode in a non-lossy format.
 decoded_uri = decoded_uri.encode('utf-8')

 only_ascii = True

 tokens = decoded_uri.split('%')
 decoded_uri = tokens[0]
 for token in tokens[1:]:
 token_partial = token[:2]
 if token_partial in _HEX_TO_BYTE:
 char, byte = _HEX_TO_BYTE[token_partial]
 else:
 char, byte = '%', 0
 decoded_uri += char + (token[2:] if byte else token)
 only_ascii = only_ascii and (byte <= 127)

 # PERF(kgriffs): Only spend the time to do this if there
 # were non-ascii bytes found in the string.
 if not only_ascii:
 decoded_uri = decoded_uri.decode('utf-8', 'replace')

 return decoded_uri

else:

 # This map construction is based on urllib
 _HEX_TO_BYTE = dict(((a + b).encode(), bytes([int(a + b, 16)]))
 for a in _HEX_DIGITS
 for b in _HEX_DIGITS)

[docs] def decode(encoded_uri):
 """Decodes percent-encoded characters in a URI or query string.

 This function models the behavior of `urllib.parse.unquote_plus`,
 albeit in a faster, more straightforward manner.

 Args:
 encoded_uri (str): An encoded URI (full or partial).

 Returns:
 str: A decoded URL. If the URL contains escaped non-ASCII
 characters, UTF-8 is assumed per RFC 3986.

 """

 decoded_uri = encoded_uri

 # PERF(kgriffs): Don't take the time to instantiate a new
 # string unless we have to.
 if '+' in decoded_uri:
 decoded_uri = decoded_uri.replace('+', ' ')

 # Short-circuit if we can
 if '%' not in decoded_uri:
 return decoded_uri

 # NOTE(kgriffs): Clients should never submit a URI that has
 # unescaped non-ASCII chars in them, but just in case they
 # do, let's encode into a non-lossy format.
 decoded_uri = decoded_uri.encode('utf-8')

 # PERF(kgriffs): This was found to be faster than using
 # a regex sub call or list comprehension with a join.
 tokens = decoded_uri.split(b'%')
 decoded_uri = tokens[0]
 for token in tokens[1:]:
 token_partial = token[:2]
 if token_partial in _HEX_TO_BYTE:
 decoded_uri += _HEX_TO_BYTE[token_partial] + token[2:]
 else:
 # malformed percentage like "x=%" or "y=%+"
 decoded_uri += b'%' + token

 # Convert back to str
 return decoded_uri.decode('utf-8', 'replace')

[docs]def parse_query_string(query_string, keep_blank_qs_values=False):
 """Parse a query string into a dict.

 Query string parameters are assumed to use standard form-encoding. Only
 parameters with values are parsed. for example, given 'foo=bar&flag',
 this function would ignore 'flag' unless the `keep_blank_qs_values` option
 is set.

 Note:
 In addition to the standard HTML form-based method for specifying
 lists by repeating a given param multiple times, Falcon supports
 a more compact form in which the param may be given a single time
 but set to a ``list`` of comma-separated elements (e.g., 'foo=a,b,c').

 When using this format, all commas uri-encoded will not be treated by
 Falcon as a delimiter. If the client wants to send a value as a list,
 it must not encode the commas with the values.

 The two different ways of specifying lists may not be mixed in
 a single query string for the same parameter.

 Args:
 query_string (str): The query string to parse.
 keep_blank_qs_values (bool): If set to ``True``, preserves boolean
 fields and fields with no content as blank strings.

 Returns:
 dict: A dictionary of (*name*, *value*) pairs, one per query
 parameter. Note that *value* may be a single ``str``, or a
 ``list`` of ``str``.

 Raises:
 TypeError: `query_string` was not a ``str``.

 """

 params = {}

 # PERF(kgriffs): This was found to be faster than using a regex, for
 # both short and long query strings. Tested on both CPython 2.7 and 3.4,
 # and on PyPy 2.3.
 for field in query_string.split('&'):
 k, _, v = field.partition('=')
 if not (v or keep_blank_qs_values):
 continue

 # Note(steffgrez): Falcon first decode name parameter for handle
 # utf8 character.
 k = decode(k)

 # NOTE(steffgrez): Falcon decode value at the last moment. So query
 # parser won't mix up between percent-encoded comma (as value) and
 # comma-separated list (as reserved character for sub-delimiter)
 if k in params:
 # The key was present more than once in the POST data. Convert to
 # a list, or append the next value to the list.
 old_value = params[k]
 if isinstance(old_value, list):
 old_value.append(decode(v))
 else:
 params[k] = [old_value, decode(v)]

 else:
 if ',' in v:
 # NOTE(kgriffs): Falcon supports a more compact form of
 # lists, in which the elements are comma-separated and
 # assigned to a single param instance. If it turns out that
 # very few people use this, it can be deprecated at some
 # point.
 v = v.split(',')

 if not keep_blank_qs_values:
 # NOTE(kgriffs): Normalize the result in the case that
 # some elements are empty strings, such that the result
 # will be the same for 'foo=1,,3' as 'foo=1&foo=&foo=3'.
 params[k] = [decode(element) for element in v if element]
 else:
 params[k] = [decode(element) for element in v]
 else:
 params[k] = decode(v)

 return params

[docs]def parse_host(host, default_port=None):
 """Parse a canonical 'host:port' string into parts.

 Parse a host string (which may or may not contain a port) into
 parts, taking into account that the string may contain
 either a domain name or an IP address. In the latter case,
 both IPv4 and IPv6 addresses are supported.

 Args:
 host (str): Host string to parse, optionally containing a
 port number.
 default_port (int, optional): Port number to return when
 the host string does not contain one (default ``None``).

 Returns:
 tuple: A parsed (*host*, *port*) tuple from the given
 host string, with the port converted to an ``int``.
 If the host string does not specify a port, `default_port` is
 used instead.

 """

 # NOTE(kgriff): The value from the Host header may
 # contain a port, so check that and strip it if
 # necessary. This is complicated by the fact that
 # a hostname may be specified either as an IP address
 # or as a domain name, and in the case of IPv6 there
 # may be multiple colons in the string.

 if host.startswith('['):
 # IPv6 address with a port
 pos = host.rfind(']:')
 if pos != -1:
 return (host[1:pos], int(host[pos + 2:]))
 else:
 return (host[1:-1], default_port)

 pos = host.rfind(':')
 if (pos == -1) or (pos != host.find(':')):
 # Bare domain name or IP address
 return (host, default_port)

 # NOTE(kgriffs): At this point we know that there was
 # only a single colon, so we should have an IPv4 address
 # or a domain name plus a port
 name, _, port = host.partition(':')
 return (name, int(port))

[docs]def unquote_string(quoted):
 """Unquote an RFC 7320 "quoted-string".

 Args:
 quoted (str): Original quoted string

 Returns:
 str: unquoted string

 Raises:
 TypeError: `quoted` was not a ``str``.
 """

 if len(quoted) < 2:
 return quoted
 elif quoted[0] != '"' or quoted[-1] != '"':
 # return original one, prevent side-effect
 return quoted

 tmp_quoted = quoted[1:-1]

 # PERF(philiptzou): Most header strings don't contain "quoted-pair" which
 # defined by RFC 7320. We use this little trick (quick string search) to
 # speed up string parsing by preventing unnecessary processes if possible.
 if '\\' not in tmp_quoted:
 return tmp_quoted
 elif r'\\' not in tmp_quoted:
 return tmp_quoted.replace('\\', '')
 else:
 return '\\'.join([q.replace('\\', '')
 for q in tmp_quoted.split(r'\\')])

 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 Created using Sphinx 1.3.5.

_modules/falcon/testing/srmock.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.testing.srmock

Copyright 2013 by Rackspace Hosting, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

from falcon import util

[docs]class StartResponseMock(object):
 """Mock object representing a WSGI `start_response` callable.

 Attributes:
 call_count (int): Number of times `start_response` was called.
 status (str): HTTP status line, e.g. '785 TPS Cover Sheet
 not attached'.
 headers (list): Raw headers list passed to `start_response`,
 per PEP-333.
 headers_dict (dict): Headers as a case-insensitive
 ``dict``-like object, instead of a ``list``.

 """

 def __init__(self):
 self._called = 0
 self.status = None
 self.headers = None
 self.exc_info = None

 def __call__(self, status, headers, exc_info=None):
 """Implements the PEP-3333 `start_response` protocol."""

 self._called += 1
 self.status = status

 # NOTE(kgriffs): Normalize headers to be lowercase regardless
 # of what Falcon returns, so asserts in tests don't have to
 # worry about the case-insensitive nature of header names.
 self.headers = [(name.lower(), value) for name, value in headers]

 self.headers_dict = util.CaseInsensitiveDict(headers)
 self.exc_info = exc_info

 @property
 def call_count(self):
 return self._called

 Created using Sphinx 1.3.5.

_static/down.png

_modules/falcon/util/misc.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 		Module code »

 Source code for falcon.util.misc

Copyright 2013 by Rackspace Hosting, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import datetime
import functools
import inspect
import warnings

import six

__all__ = (
 'deprecated',
 'http_now',
 'dt_to_http',
 'http_date_to_dt',
 'to_query_str',
 'get_bound_method',
)

PERF(kgriffs): Avoid superfluous namespace lookups
strptime = datetime.datetime.strptime
utcnow = datetime.datetime.utcnow

NOTE(kgriffs): We don't want our deprecations to be ignored by default,
so create our own type.
#
TODO(kgriffs): Revisit this decision if users complain.
class DeprecatedWarning(UserWarning):
 pass

[docs]def deprecated(instructions):
 """Flags a method as deprecated.

 This function returns a decorator which can be used to mark deprecated
 functions. Applying this decorator will result in a warning being
 emitted when the function is used.

 Args:
 instructions (str): Specific guidance for the developer, e.g.:
 'Please migrate to add_proxy(...)''
 """

 def decorator(func):
 @functools.wraps(func)
 def wrapper(*args, **kwargs):
 message = 'Call to deprecated function {0}(...). {1}'.format(
 func.__name__,
 instructions)

 frame = inspect.currentframe().f_back

 warnings.warn_explicit(message,
 category=DeprecatedWarning,
 filename=inspect.getfile(frame.f_code),
 lineno=frame.f_lineno)

 return func(*args, **kwargs)

 return wrapper

 return decorator

[docs]def http_now():
 """Returns the current UTC time as an IMF-fixdate.

 Returns:
 str: The current UTC time as an IMF-fixdate,
 e.g., 'Tue, 15 Nov 1994 12:45:26 GMT'.
 """

 return dt_to_http(utcnow())

[docs]def dt_to_http(dt):
 """Converts a ``datetime`` instance to an HTTP date string.

 Args:
 dt (datetime): A ``datetime`` instance to convert, assumed to be UTC.

 Returns:
 str: An RFC 1123 date string, e.g.: "Tue, 15 Nov 1994 12:45:26 GMT".

 """

 # Tue, 15 Nov 1994 12:45:26 GMT
 return dt.strftime('%a, %d %b %Y %H:%M:%S GMT')

[docs]def http_date_to_dt(http_date, obs_date=False):
 """Converts an HTTP date string to a datetime instance.

 Args:
 http_date (str): An RFC 1123 date string, e.g.:
 "Tue, 15 Nov 1994 12:45:26 GMT".
 obs_date (bool, optional): Support obs-date formats according to
 RFC 7231, e.g.:
 "Sunday, 06-Nov-94 08:49:37 GMT" (default ``False``).

 Returns:
 datetime: A UTC datetime instance corresponding to the given
 HTTP date.

 Raises:
 ValueError: http_date doesn't match any of the available time formats
 """

 if not obs_date:
 # PERF(kgriffs): This violates DRY, but we do it anyway
 # to avoid the overhead of setting up a tuple, looping
 # over it, and setting up exception handling blocks each
 # time around the loop, in the case that we don't actually
 # need to check for multiple formats.
 return strptime(http_date, '%a, %d %b %Y %H:%M:%S %Z')

 time_formats = (
 '%a, %d %b %Y %H:%M:%S %Z',
 '%a, %d-%b-%Y %H:%M:%S %Z',
 '%A, %d-%b-%y %H:%M:%S %Z',
 '%a %b %d %H:%M:%S %Y',
)

 # Loop through the formats and return the first that matches
 for time_format in time_formats:
 try:
 return strptime(http_date, time_format)
 except ValueError:
 continue

 # Did not match any formats
 raise ValueError('time data %r does not match known formats' % http_date)

[docs]def to_query_str(params):
 """Converts a dictionary of params to a query string.

 Args:
 params (dict): A dictionary of parameters, where each key is a
 parameter name, and each value is either a ``str`` or
 something that can be converted into a ``str``. If `params`
 is a ``list``, it will be converted to a comma-delimited string
 of values (e.g., 'thing=1,2,3')

 Returns:
 str: A URI query string including the '?' prefix, or an empty string
 if no params are given (the ``dict`` is empty).
 """

 if not params:
 return ''

 # PERF: This is faster than a list comprehension and join, mainly
 # because it allows us to inline the value transform.
 query_str = '?'
 for k, v in params.items():
 if v is True:
 v = 'true'
 elif v is False:
 v = 'false'
 elif isinstance(v, list):
 v = ','.join(map(str, v))
 else:
 v = str(v)

 query_str += k + '=' + v + '&'

 return query_str[:-1]

def get_bound_method(obj, method_name):
 """Get a bound method of the given object by name.

 Args:
 obj: Object on which to look up the method.
 method_name: Name of the method to retrieve.

 Returns:
 Bound method, or ``None`` if the method does not exist on
 the object.

 Raises:
 AttributeError: The method exists, but it isn't
 bound (most likely a class was passed, rather than
 an instance of that class).

 """

 method = getattr(obj, method_name, None)
 if method is not None:
 # NOTE(kgriffs): Ensure it is a bound method
 if six.get_method_self(method) is None:
 # NOTE(kgriffs): In Python 3 this code is unreachable
 # because the above will raise AttributeError on its
 # own.
 msg = '{0} must be a bound method'.format(method)
 raise AttributeError(msg)

 return method

 Created using Sphinx 1.3.5.

_static/up.png

user/big-picture-snip.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

The Big Picture

[image: Falcon-based web application architecture]

 Created using Sphinx 1.3.5.

_static/img/my-web-app.gif
Single-page App SDK =

WSGI Server (uWSGI, Gunicorn, etc.)

My API (WSGI App)

My Hooks /\ My Error

Handlers
Falcon

My Resource

Classes V My Utilities

user/advanced.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

 Created using Sphinx 1.3.5.

user/deployment.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

Deploying Your Web API

[talk about, diagram async, host, etc.]

[async front, async to backend options - asyncio, gevent, etc.]

 Created using Sphinx 1.3.5.

_static/img/logo.png

_static/img/my-web-app.png
Single-page App SDK Etc.

WSGI Server (UWSGI, Gunicorn, etc.)

My API (WSGI App)

My Hooks /\ My Error

Handlers

Falcon

My Resource

Classes \/ My Utilities

community/contrib-snip.html

 Navigation

 		
 index

 		
 modules |

 		Falcon 1.0.0 documentation »

Mailing List

The Falcon community maintains a mailing list that you can use to share
your ideas and ask questions about the framework. We use the appropriately
minimalistic Librelist [http://librelist.com/] to host the discussions.

To join the mailing list, simply send your first email to falcon@librelist.com!
This will automatically subscribe you to the mailing list and sends your email
along to the rest of the subscribers. For more information about managing your
subscription, check out the
Librelist help page [http://librelist.com/help.html].

All contributors and maintainers of this project are subject to our Code
of Conduct [https://github.com/falconry/falcon/blob/master/CODEOFCONDUCT.md].
We expect everyone who participates on the mailing list to act
professionally, and lead by example in encouraging constructive
discussions. Each individual in the community is responsible for creating
a positive, constructive, and productive culture.

Discussions are archived [http://librelist.com/browser/falcon]
for posterity.

Submit Issues

If you have an idea for a feature, run into something that is harder to
use than it should be, or find a bug, please let the crew know
in #falconframework and/or by
submitting an issue [https://github.com/racker/falcon/issues]. We
need your help to make Falcon awesome!

Pay it Forward

We’d like to invite you to help other community members with their
questions in IRC, and to peer-review
pull requests [https://github.com/racker/falcon/pulls]. If you use the
Chrome browser, we recommend installing the
NotHub extension [http://nothub.org/] to stay up to date with PRs.

Code of Conduct

All contributors and maintainers of this project are subject to our Code
of Conduct [https://github.com/falconry/falcon/blob/master/CODEOFCONDUCT.md].

 Created using Sphinx 1.3.5.

